Selected ATcT [1, 2] enthalpy of formation based on version 1.176 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.172 to include species related to Criegee intermediates that are involved in several ongoing studies[4].

Indane

Formula: C6H4(CH2CH2CH2) (cr,l)
CAS RN: 496-11-7
ATcT ID: 496-11-7*500
SMILES: c1ccc2c(c1)CCC2
InChI: InChI=1S/C9H10/c1-2-5-9-7-3-6-8(9)4-1/h1-2,4-5H,3,6-7H2
InChIKey: PQNFLJBBNBOBRQ-UHFFFAOYSA-N
Hills Formula: C9H10

2D Image:

c1ccc2c(c1)CCC2
Aliases: C6H4(CH2CH2CH2); 2,3-Dihydro-1H-indene; Indan; 1,2-Hydrindene; 2,3-Dihydroindene; Benzocyclopentane; Hydrindene; Hydrindonaphthene; Indane; NSC 5292
Relative Molecular Mass: 118.1757 ± 0.0072

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
25.4010.92± 0.76kJ/mol

Top contributors to the provenance of ΔfH° of C6H4(CH2CH2CH2) (cr,l)

The 20 contributors listed below account only for 75.1% of the provenance of ΔfH° of C6H4(CH2CH2CH2) (cr,l).
A total of 38 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
27.57123.2 C6H4(CH2CH2CH2) (cr,l) + 23/2 O2 (g) → 9 CO2 (g) + 5 H2O (cr,l) ΔrH°(298.15 K) = -1190.80 ± 0.33 kcal/molGood 1971a
13.57123.1 C6H4(CH2CH2CH2) (cr,l) + 23/2 O2 (g) → 9 CO2 (g) + 5 H2O (cr,l) ΔrH°(298.15 K) = -1190.60 ± 0.47 kcal/molStull 1961
3.27142.1 C6H4(CHCHCH2) (cr,l) H2 (g) → C6H4(CH2CH2CH2) (cr,l) ΔrH°(298.15 K) = -23.83 ± 0.77 kcal/molStull 1961
2.77128.5 C6H4(CH2CH2CH2) (g) + 3 CH2CH2 (g) → 2 C6H6 (g) CH4 (g) CH3CH3 (g) ΔrH°(0 K) = -50.05 ± 0.9 kcal/molRuscic W1RO
2.37129.5 C6H4(CH2CH2CH2) (g) CH2CH2 (g) → C6H6 (g) CH2(CH2CHCHCH2) (g) ΔrH°(0 K) = 1.61 ± 0.9 kcal/molRuscic W1RO
2.27124.3 C6H4(CH2CH2CH2) (cr,l) → C6H4(CH2CH2CH2) (g) ΔrH°(298.15 K) = 49.02 ± 0.40 kJ/molVerevkin 2011a, est unc
2.27125.5 C6H4(CH2CH2CH2) (g) CH3CHCHCH3 (g, trans) → C6H5CH2CH3 (g) CH2(CH2CHCHCH2) (g) ΔrH°(0 K) = 3.94 ± 0.85 kcal/molRuscic W1RO
2.27128.2 C6H4(CH2CH2CH2) (g) + 3 CH2CH2 (g) → 2 C6H6 (g) CH4 (g) CH3CH3 (g) ΔrH°(0 K) = -48.66 ± 1.0 kcal/molRuscic G4
1.97125.2 C6H4(CH2CH2CH2) (g) CH3CHCHCH3 (g, trans) → C6H5CH2CH3 (g) CH2(CH2CHCHCH2) (g) ΔrH°(0 K) = 4.31 ± 0.90 kcal/molRuscic G4
1.97125.4 C6H4(CH2CH2CH2) (g) CH3CHCHCH3 (g, trans) → C6H5CH2CH3 (g) CH2(CH2CHCHCH2) (g) ΔrH°(0 K) = 4.82 ± 0.90 kcal/molRuscic CBS-n
1.97125.1 C6H4(CH2CH2CH2) (g) CH3CHCHCH3 (g, trans) → C6H5CH2CH3 (g) CH2(CH2CHCHCH2) (g) ΔrH°(0 K) = 4.63 ± 0.90 kcal/molRuscic G3X
1.67120.6 C6H4(CH2CH2CH2) (g) → 9 C (g) + 10 H (g) ΔrH°(0 K) = 8475.5 ± 5.2 kJ/molKarton 2021
1.67125.3 C6H4(CH2CH2CH2) (g) CH3CHCHCH3 (g, trans) → C6H5CH2CH3 (g) CH2(CH2CHCHCH2) (g) ΔrH°(0 K) = 4.60 ± 1.00 kcal/molRuscic CBS-n
1.57124.1 C6H4(CH2CH2CH2) (cr,l) → C6H4(CH2CH2CH2) (g) ΔrH°(298.15 K) = 48.80 ± 0.48 kJ/molMajer 1985
1.47143.5 C6H4(CH2CH2CH2) (g) CH2(CHCHCHCH) (g) → C6H4(CHCHCH2) (g) CH2(CH2CHCHCH2) (g) ΔrH°(0 K) = 0.44 ± 0.85 kcal/molRuscic W1RO
1.47128.1 C6H4(CH2CH2CH2) (g) + 3 CH2CH2 (g) → 2 C6H6 (g) CH4 (g) CH3CH3 (g) ΔrH°(0 K) = -48.28 ± 1.1 (×1.114) kcal/molRuscic G3X
1.37139.1 C6H4(CHCHCH2) (cr,l) + 11 O2 (g) → 9 CO2 (g) + 4 H2O (cr,l) ΔrH°(298.15 K) = -1146.12 ± 0.30 kcal/molStull 1961
1.37143.1 C6H4(CH2CH2CH2) (g) CH2(CHCHCHCH) (g) → C6H4(CHCHCH2) (g) CH2(CH2CHCHCH2) (g) ΔrH°(0 K) = 0.49 ± 0.90 kcal/molRuscic G3X
1.37143.2 C6H4(CH2CH2CH2) (g) CH2(CHCHCHCH) (g) → C6H4(CHCHCH2) (g) CH2(CH2CHCHCH2) (g) ΔrH°(0 K) = 0.40 ± 0.90 kcal/molRuscic G4
1.37143.4 C6H4(CH2CH2CH2) (g) CH2(CHCHCHCH) (g) → C6H4(CHCHCH2) (g) CH2(CH2CHCHCH2) (g) ΔrH°(0 K) = 0.57 ± 0.90 kcal/molRuscic CBS-n

Top 10 species with enthalpies of formation correlated to the ΔfH° of C6H4(CH2CH2CH2) (cr,l)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
92.7 IndaneC6H4(CH2CH2CH2) (g)c1ccc2c(c1)CCC290.8659.83± 0.76kJ/mol118.1757 ±
0.0072
496-11-7*0
42.5 Indane cation[C6H4(CH2CH2CH2)]+ (g)c1ccc2c(c1)C[CH2+]C2909.4879.5± 1.7kJ/mol118.1752 ±
0.0072
78854-02-1*0
28.6 IndeneC6H4(CHCHCH2) (g)c1ccc2c(c1)C=CC2183.77159.88± 0.72kJ/mol116.1598 ±
0.0072
95-13-6*0
28.2 Indene cation[C6H4(CHCHCH2)]+ (g)c1ccc2c(c1)C=C[CH2+]2969.94946.70± 0.73kJ/mol116.1593 ±
0.0072
42949-13-3*0
21.7 CyclopenteneCH2(CH2CHCHCH2) (g)C1CC=CC159.9235.65± 0.43kJ/mol68.1170 ±
0.0040
142-29-0*0
21.3 IndeneC6H4(CHCHCH2) (cr,l)c1ccc2c(c1)C=CC2117.22109.93± 0.85kJ/mol116.1598 ±
0.0072
95-13-6*500
19.8 BenzeneC6H6 (g)c1ccccc1100.6883.17± 0.21kJ/mol78.1118 ±
0.0048
71-43-2*0
19.8 Benzene cation[C6H6]+ (g)c1ccc(cc1)[H+]992.57976.11± 0.21kJ/mol78.1113 ±
0.0048
34504-50-2*0
19.8 BenzeneC6H6 (cr,l)c1ccccc150.7749.23± 0.21kJ/mol78.1118 ±
0.0048
71-43-2*500
19.2 CyclopentaneCH2(CH2CH2CH2CH2) (g)C1CCCC1-43.39-75.96± 0.38kJ/mol70.1329 ±
0.0041
287-92-3*0

Most Influential reactions involving C6H4(CH2CH2CH2) (cr,l)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.5177124.3 C6H4(CH2CH2CH2) (cr,l) → C6H4(CH2CH2CH2) (g) ΔrH°(298.15 K) = 49.02 ± 0.40 kJ/molVerevkin 2011a, est unc
0.3597124.1 C6H4(CH2CH2CH2) (cr,l) → C6H4(CH2CH2CH2) (g) ΔrH°(298.15 K) = 48.80 ± 0.48 kJ/molMajer 1985
0.2887123.2 C6H4(CH2CH2CH2) (cr,l) + 23/2 O2 (g) → 9 CO2 (g) + 5 H2O (cr,l) ΔrH°(298.15 K) = -1190.80 ± 0.33 kcal/molGood 1971a
0.1427123.1 C6H4(CH2CH2CH2) (cr,l) + 23/2 O2 (g) → 9 CO2 (g) + 5 H2O (cr,l) ΔrH°(298.15 K) = -1190.60 ± 0.47 kcal/molStull 1961
0.0977142.1 C6H4(CHCHCH2) (cr,l) H2 (g) → C6H4(CH2CH2CH2) (cr,l) ΔrH°(298.15 K) = -23.83 ± 0.77 kcal/molStull 1961
0.0827124.2 C6H4(CH2CH2CH2) (cr,l) → C6H4(CH2CH2CH2) (g) ΔrH°(298.15 K) = 49.20 ± 1.00 kJ/molRoux 2008, Stull 1961


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.176 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   T. L. Nguyen et al, ongoing studies (2024)
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.