Selected ATcT [1, 2] enthalpy of formation based on version 1.176 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.172 to include species related to Criegee intermediates that are involved in several ongoing studies[4].

Ethane

Formula: CH3CH3 (g)
CAS RN: 74-84-0
ATcT ID: 74-84-0*0
SMILES: CC
InChI: InChI=1S/C2H6/c1-2/h1-2H3
InChIKey: OTMSDBZUPAUEDD-UHFFFAOYSA-N
Hills Formula: C2H6

2D Image:

CC
Aliases: CH3CH3; Ethane; Dimethyl; Bimethyl; Ethyl hydride; Methylmethane; C2H6 g; CH3CH3 g; CH3-CH3; UN 1035; UN 1961
Relative Molecular Mass: 30.0690 ± 0.0017

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
-68.40-84.03± 0.12kJ/mol

3D Image of CH3CH3 (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of CH3CH3 (g)

The 20 contributors listed below account only for 44.5% of the provenance of ΔfH° of CH3CH3 (g).
A total of 976 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
5.92469.1 CH3CH3 (g) + 7/2 O2 (g) → 2 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -1560.68 ± 0.25 (×1.384) kJ/molPittam 1972
5.82375.1 H2 (g) C (graphite) → CH4 (g) ΔrG°(1165 K) = 37.521 ± 0.068 kJ/molSmith 1946, note COf, 3rd Law
5.32530.1 CH2CH2 (g) H2 (g) → CH3CH3 (g) ΔrH°(355.15 K) = -32.831 ± 0.05 kcal/molKistiakowsky 1935
3.3125.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
3.19233.2 C6H4(C2H2(CC(C4H4))) (g) + 18 CH4 (g) → 9 CH3CH3 (g) + 7 CH2CH2 (g) ΔrH°(0 K) = 776.95 ± 6 kJ/molDorofeeva 2022, est unc
2.52530.2 CH2CH2 (g) H2 (g) → CH3CH3 (g) ΔrG°(723.15 K) = -10.867 ± 0.072 kcal/molKistiakowsky 1951
2.52469.2 CH3CH3 (g) + 7/2 O2 (g) → 2 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -372.805 ± 0.110 (×1.139) kcal/molProsen 1945, Rossini 1934
2.02529.1 CH2CH2 (g) + 3 O2 (g) → 2 CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -1411.18 ± 0.30 kJ/molRossini 1937
1.73255.12 CH3CH2CH3 (g) CH4 (g) → 2 CH3CH3 (g) ΔrH°(0 K) = 2.96 ± 0.20 kcal/molKarton 2011, Karton 2009b
1.68261.6 CH(CH(CHCH)) (g) + 8 CH4 (g) → 6 CH3CH3 (g) ΔrH°(0 K) = -428.9 ± 3.0 (×1.067) kJ/molKlopper 2010a, Klopper 2009, est unc
1.49196.2 C6H4(C4H4) (g) + 12 CH4 (g) → 6 CH3CH3 (g) + 5 CH2CH2 (g) ΔrH°(0 K) = 516.00 ± 6 kJ/molDorofeeva 2022, est unc
1.33253.1 CH3CH2CH3 (g) + 5 O2 (g) → 3 CO2 (g) + 4 H2O (cr,l) ΔrH°(298.15 K) = -2219.15 ± 0.46 (×1.114) kJ/molPittam 1972
1.22530.3 CH2CH2 (g) H2 (g) → CH3CH3 (g) ΔrG°(653.15 K) = -13.114 ± 0.104 kcal/molKistiakowsky 1951
1.22228.7 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.464 ± 0.024 kJ/molHawtin 1966, note CO2e
1.12268.11 CO (g) → C (g) O (g) ΔrH°(0 K) = 1071.92 ± 0.10 kJ/molThorpe 2021
0.82611.11 HCCH (g) + 2 H2 (g) → CH3CH3 (g) ΔrH°(0 K) = -71.01 ± 0.20 kcal/molKarton 2007
0.83463.11 CH3CCH (g) CH4 (g) → HCCH (g) CH3CH3 (g) ΔrH°(0 K) = 33.87 ± 0.8 kJ/molFerguson 2013, est unc
0.73255.10 CH3CH2CH3 (g) CH4 (g) → 2 CH3CH3 (g) ΔrH°(0 K) = 3.00 ± 0.30 kcal/molKarton 2011
0.62286.9 C (graphite) CO2 (g) → 2 CO (g) ΔrG°(1165 K) = -33.545 ± 0.058 kJ/molSmith 1946, note COf, 3rd Law
0.62611.1 HCCH (g) + 2 H2 (g) → CH3CH3 (g) ΔrH°(355.15 K) = -75.078 ± 0.150 (×1.509) kcal/molConn 1939, note C2H2

Top 10 species with enthalpies of formation correlated to the ΔfH° of CH3CH3 (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
67.2 PropaneCH3CH2CH3 (g)CCC-82.73-105.01± 0.15kJ/mol44.0956 ±
0.0025
74-98-6*0
61.3 EthyleneCH2CH2 (g)C=C60.8952.38± 0.11kJ/mol28.0532 ±
0.0016
74-85-1*0
61.2 Ethylene cation[CH2CH2]+ (g)C=[CH2+]1075.211067.99± 0.11kJ/mol28.0526 ±
0.0016
34470-02-5*0
47.1 n-ButaneCH3CH2CH2CH3 (g)CCCC-98.25-125.56± 0.18kJ/mol58.1222 ±
0.0033
106-97-8*0
46.1 PropeneCH3CHCH2 (g)CC=C34.8920.06± 0.18kJ/mol42.0797 ±
0.0024
115-07-1*0
46.0 Propylene cation[CH3CHCH2]+ (g)CC=[CH2+]975.18961.65± 0.18kJ/mol42.0792 ±
0.0024
34504-10-4*0
42.4 iso-Propylium[CH3CHCH3]+ (g)C[CH+]C822.97805.89± 0.23kJ/mol43.0871 ±
0.0024
19252-53-0*0
39.0 EthylCH3CH2 (g)C[CH2]131.50120.75± 0.20kJ/mol29.0611 ±
0.0016
2025-56-1*0
38.3 MethaneCH4 (g)C-66.547-74.516± 0.043kJ/mol16.04246 ±
0.00085
74-82-8*0
37.7 Allyl anion[CH2CHCH2]- (g)C=C[CH2-]134.00122.99± 0.21kJ/mol41.0723 ±
0.0024
1724-46-5*0

Most Influential reactions involving CH3CH3 (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.8132464.8 [CH3CH3]- (g) → CH3CH3 (g) ΔrH°(0 K) = -1.143 ± 0.050 eVRuscic W1RO
0.7312462.6 CH3CH3 (g) → [CH3CH3]+ (g) ΔrH°(0 K) = 11.521 ± 0.007 eVNicholson 1965
0.2528635.7 SiH3SiH3 (g) + 2 CH4 (g) → CH3CH3 (g) + 2 SiH4 (g) ΔrH°(0 K) = 13.99 ± 0.2 kcal/molKarton 2011, Karton 2007b
0.2365317.6 CH2C(O)OH (g, syn) CH3CH3 (g) → CH3C(O)OH (g, syn) CH3CH2 (g) ΔrH°(0 K) = 7.41 ± 2.00 kJ/molKlippenstein 2017
0.2367539.6 CH2N(O)O (g) CH3CH3 (g) → CH3N(O)O (g) CH3CH2 (g) ΔrH°(0 K) = -1.76 ± 2.0 kJ/molKlippenstein 2017
0.2314464.4 O(CHCH) (g, singlet) CH3CH3 (g) → O(CH2CH2) (g) CH2CH2 (g) ΔrH°(0 K) = -43.57 ± 0.30 kcal/molKarton 2011
0.2302485.3 [C2H7]+ (g) CO (g) → [HCO]+ (g) CH3CH3 (g) ΔrG°(298.15 K) = 1.43 ± 0.3 kcal/molMackay 1981, 3rd Law, note unc5
0.2275575.5 CH3CH2N (g) CH3CH3 (g) → CH3N (g) CH3CH2CH3 (g) ΔrH°(0 K) = 0.56 ± 0.85 kcal/molRuscic W1RO
0.2165302.9 HC(O)OCH2 (g, syn) CH3CH3 (g) → HC(O)OCH3 (g, syn) CH3CH2 (g) ΔrH°(0 K) = 4.04 ± 2.00 kJ/molKlippenstein 2017
0.2146605.6 CH2FCH2F (g) → CF3CF3 (g) + 2 CH3CH3 (g) ΔrH°(0 K) = -166.144 ± 5.0 kJ/molNagy 2014, est unc
0.2097619.5 (CH2C(O)OH)2 (g) + 2 CH3 (g) → 2 CH2C(O)OH (g, syn) CH3CH3 (g) ΔrH°(0 K) = -4.89 ± 0.9 kcal/molRuscic W1RO
0.2052530.1 CH2CH2 (g) H2 (g) → CH3CH3 (g) ΔrH°(355.15 K) = -32.831 ± 0.05 kcal/molKistiakowsky 1935
0.2025575.4 CH3CH2N (g) CH3CH3 (g) → CH3N (g) CH3CH2CH3 (g) ΔrH°(0 K) = 0.64 ± 0.90 kcal/molRuscic CBS-n
0.2025575.2 CH3CH2N (g) CH3CH3 (g) → CH3N (g) CH3CH2CH3 (g) ΔrH°(0 K) = 0.80 ± 0.90 kcal/molRuscic G4
0.2025575.1 CH3CH2N (g) CH3CH3 (g) → CH3N (g) CH3CH2CH3 (g) ΔrH°(0 K) = 0.53 ± 0.90 kcal/molRuscic G3X
0.1983367.6 CH3CH2CH (g, triplet gauche) CH3CH3 (g) → CH3CH (g, triplet) CH3CH2CH3 (g) ΔrH°(0 K) = -2.89 ± 2.0 kJ/molKlippenstein 2017
0.1983257.2 [CH3CH2CH3]+ (g) CH3CH3 (g) → CH3CH2CH3 (g) [CH3CH3]+ (g) ΔrH°(0 K) = 0.580 ± 0.039 eVRuscic G3X
0.1896599.11 CH3CH2F (g) CH4 (g) → CH3F (g) CH3CH3 (g) ΔrH°(0 K) = 6.78 ± 0.20 kcal/molKarton 2011
0.1786609.6 CH3CHF2 (g) → CF3CF3 (g) + 2 CH3CH3 (g) ΔrH°(0 K) = -2.037 ± 3.3 kJ/molNagy 2014, est unc
0.1707632.2 CH3CHBr2 (g) CH3CH3 (g) → 2 CH3CH2Br (g) ΔrH°(0 K) = -1.68 ± 1.0 kcal/molRuscic G4


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.176 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   T. L. Nguyen et al, ongoing studies (2024)
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.