Selected ATcT [1, 2] enthalpy of formation based on version 1.122g of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122e [4] to include results centered on the determination of the appearance energy of CH3+ from CH4. [5].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
Chlorobenzene cation[C6H5Cl]+ (g)c1ccc(cc1)[Cl+]942.47928.55± 0.61kJ/mol112.5561 ±
0.0049
55450-32-3*0

Representative Geometry of [C6H5Cl]+ (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of [C6H5Cl]+ (g)

The 10 contributors listed below account for 90.1% of the provenance of ΔfH° of [C6H5Cl]+ (g).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
47.45131.1 C6H5Cl (cr,l) + 7 O2 (g) → 6 CO2 (g) HCl (aq, 74 H2O) + 2 H2O (cr,l) ΔrH°(298.15 K) = -743.04 ± 0.19 kcal/molHubbard 1954a
25.35130.2 C6H5Cl (cr,l) + 7 O2 (g) → 6 CO2 (g) HCl (aq, 600 H2O) + 2 H2O (cr,l) ΔrH°(298.15 K) = -743.47 ± 0.26 kcal/molKolesov 1967
5.05130.3 C6H5Cl (cr,l) + 7 O2 (g) → 6 CO2 (g) HCl (aq, 600 H2O) + 2 H2O (cr,l) ΔrH°(298.15 K) = -3112.60 ± 0.90 (×2.709) kJ/molPlatonov 1985
4.05128.1 C6H5Cl (cr,l) → C6H5Cl (g) ΔrH°(298.15 K) = 41.00 ± 0.20 kJ/molMajer 1985, Wadso 1968
1.95132.1 C6H6 (cr,l) Cl2 (g) → C6H5Cl (cr,l) HCl (g) ΔrH°(298.15 K) = -32.0 ± 0.9 (×1.022) kcal/molKirkbride 1956, Cox 1970
1.85128.4 C6H5Cl (cr,l) → C6H5Cl (g) ΔrH°(298.15 K) = 40.85 ± 0.30 kJ/molThermoData 2004
1.35126.1 C6H5Cl (g) → [C6H5]+ (g) Cl (g) ΔrH°(0 K) = 12.428 ± 0.040 eVStevens 2009
1.15126.5 C6H5Cl (g) → [C6H5]+ (g) Cl (g) ΔrH°(0 K) = 286.7 ± 1 kcal/molPratt 1981
0.95155.1 C6H5Cl (g) I (g) → C6H5I (g) Cl (g) ΔrH°(0 K) = 1.255 ± 0.048 eVStevens 2009
0.85127.2 [C6H5Cl]+ (g) → [C6H5]+ (g) Cl (g) ΔrH°(0 K) = 3.40 ± 0.05 eVRosenstock 1979

Top 10 species with enthalpies of formation correlated to the ΔfH° of [C6H5Cl]+ (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
100.0 ChlorobenzeneC6H5Cl (g)c1ccc(cc1)Cl67.1452.18± 0.61kJ/mol112.5566 ±
0.0049
108-90-7*0
96.2 ChlorobenzeneC6H5Cl (cr,l)c1ccc(cc1)Cl11.22± 0.59kJ/mol112.5566 ±
0.0049
108-90-7*500
17.6 Phenylium[C6H5]+ (g)c1cccc[c+]11148.461135.68± 0.87kJ/mol77.1034 ±
0.0048
17333-73-2*0
17.6 Phenylium[C6H5]+ (g, singlet)c1cccc[c+]11148.461135.68± 0.87kJ/mol77.1034 ±
0.0048
17333-73-2*2
14.8 IodobenzeneC6H5I (g)c1ccc(cc1)I177.7161.7± 1.0kJ/mol204.0084 ±
0.0048
591-50-4*0
14.8 Iodobenzene cation[C6H5I]+ (g)c1ccc(cc1)[I+]1022.71007.2± 1.0kJ/mol204.0078 ±
0.0048
38406-85-8*0
13.7 IodobenzeneC6H5I (cr,l)c1ccc(cc1)I112.8112.9± 1.1kJ/mol204.0084 ±
0.0048
591-50-4*500
13.5 Carbon dioxideCO2 (g)C(=O)=O-393.108-393.474± 0.015kJ/mol44.00950 ±
0.00100
124-38-9*0
12.9 BromobenzeneC6H5Br (g)c1ccc(cc1)Br126.6104.6± 1.3kJ/mol157.0079 ±
0.0049
108-86-1*0
12.9 Bromobenzene cation[C6H5Br]+ (g)c1ccc(cc1)[Br+]994.8973.2± 1.3kJ/mol157.0074 ±
0.0049
55450-33-4*0

Most Influential reactions involving [C6H5Cl]+ (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.9665116.1 C6H5Cl (g) → [C6H5Cl]+ (g) ΔrH°(0 K) = 73171.83 ± 0.26 cm-1Lu 2016, note unc
0.0405127.2 [C6H5Cl]+ (g) → [C6H5]+ (g) Cl (g) ΔrH°(0 K) = 3.40 ± 0.05 eVRosenstock 1979
0.0255116.2 C6H5Cl (g) → [C6H5Cl]+ (g) ΔrH°(0 K) = 73172.1 ± 1.6 cm-1Gao 2011
0.0075127.1 [C6H5Cl]+ (g) → [C6H5]+ (g) Cl (g) ΔrH°(0 K) = 3.26 ± 0.02 (×5.781) eVRosenstock 1979, Durant 1984, Stanley 1990
0.0025127.3 [C6H5Cl]+ (g) → [C6H5]+ (g) Cl (g) ΔrH°(0 K) = 3.19 ± 0.05 (×3.748) eVRosenstock 1980, Rosenstock 1979
0.0025116.4 C6H5Cl (g) → [C6H5Cl]+ (g) ΔrH°(0 K) = 73173 ± 5 cm-1Lembach 1997
0.0025116.5 C6H5Cl (g) → [C6H5Cl]+ (g) ΔrH°(0 K) = 73170 ± 5 cm-1Wright 1995
0.0025116.3 C6H5Cl (g) → [C6H5Cl]+ (g) ΔrH°(0 K) = 73177 ± 5 (×1.044) cm-1Kwon 2002
0.0005169.2 C6H5Br (g) [C6H5Cl]+ (g) → [C6H5Br]+ (g) C6H5Cl (g) ΔrH°(350 K) = -2.14 ± 0.5 kcal/molLias 1978, 2nd Law, est unc
0.0005169.3 C6H5Br (g) [C6H5Cl]+ (g) → [C6H5Br]+ (g) C6H5Cl (g) ΔrH°(350 K) = -1.70 ± 0.5 kcal/molLias 1978, 2nd Law, est unc
0.0005169.1 C6H5Br (g) [C6H5Cl]+ (g) → [C6H5Br]+ (g) C6H5Cl (g) ΔrG°(350 K) = -2.16 ± 0.5 kcal/molLias 1978, 3rd Law, est unc
0.0005116.6 C6H5Cl (g) → [C6H5Cl]+ (g) ΔrH°(0 K) = 73176 ± 10 cm-1Ripoche 1993
0.0005170.4 C6H5Br (g) [C6H5Cl]+ (g) → [C6H5Br]+ (g) C6H5Cl (g) ΔrH°(0 K) = -0.069 ± 0.060 eVRuscic G4
0.0005168.6 C6H5Cl (g) [C6H5F]+ (g) → [C6H5Cl]+ (g) C6H5F (g) ΔrH°(0 K) = -0.125 ± 0.035 eVRuscic W1RO
0.0005170.3 C6H5Br (g) [C6H5Cl]+ (g) → [C6H5Br]+ (g) C6H5Cl (g) ΔrH°(0 K) = -0.069 ± 0.075 eVRuscic G3X
0.0005170.5 C6H5Br (g) [C6H5Cl]+ (g) → [C6H5Br]+ (g) C6H5Cl (g) ΔrH°(0 K) = -0.057 ± 0.080 eVRuscic CBS-n
0.0005168.4 C6H5Cl (g) [C6H5F]+ (g) → [C6H5Cl]+ (g) C6H5F (g) ΔrH°(0 K) = -0.125 ± 0.060 eVRuscic G4
0.0005116.7 C6H5Cl (g) → [C6H5Cl]+ (g) ΔrH°(0 K) = 9.066 ± 0.002 (×3.084) eVPotts 2000
0.0005116.8 C6H5Cl (g) → [C6H5Cl]+ (g) ΔrH°(0 K) = 9.066 ± 0.005 (×1.242) eVDurant 1984, Rosenstock 1977
0.0005168.3 C6H5Cl (g) [C6H5F]+ (g) → [C6H5Cl]+ (g) C6H5F (g) ΔrH°(0 K) = -0.121 ± 0.075 eVRuscic G3X


References (for your convenience, also available in RIS and BibTex format)
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122g of the Thermochemical Network (2019); available at ATcT.anl.gov
4   J. P. Porterfield, D. H. Bross, B. Ruscic, J. H. Thorpe, T. L. Nguyen, J. H. Baraban, J. F. Stanton, J. W. Daily, and G. B. Ellison,
Thermal Decomposition of Potential Ester Biofuels, Part I: Methyl Acetate and Methyl Butanoate.
J. Chem. Phys. A 121, 4658-4677 (2017) [DOI: 10.1021/acs.jpca.7b02639] (Veronica Vaida Festschrift)
5   Y.-C. Chang, B. Xiong, D. H. Bross, B. Ruscic, and C. Y. Ng,
A Vacuum Ultraviolet laser Pulsed Field Ionization-Photoion Study of Methane (CH4): Determination of the Appearance Energy of Methylium From Methane with Unprecedented Precision and the Resulting Impact on the Bond Dissociation Energies of CH4 and CH4+.
Phys. Chem. Chem. Phys. 19, 9592-9605 (2017) [DOI: 10.1039/c6cp08200a] (part of 2017 PCCP Hot Articles collection)
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.