Selected ATcT [1, 2] enthalpy of formation based on version 1.122g of the Thermochemical Network [3] This version of ATcT results was generated from an expansion of version 1.122e [4] to include results centered on the determination of the appearance energy of CH3+ from CH4. [5].
|
Species Name |
Formula |
Image |
ΔfH°(0 K) |
ΔfH°(298.15 K) |
Uncertainty |
Units |
Relative Molecular Mass |
ATcT ID |
Hydrogen chloride | HCl (g) | | -91.989 | -92.173 | ± 0.0062 | kJ/mol | 36.46064 ± 0.00090 | 7647-01-0*0 |
|
Representative Geometry of HCl (g) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of HCl (g)The 5 contributors listed below account for 90.8% of the provenance of ΔfH° of HCl (g).
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of HCl (g) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 36.1 | Chloride | Cl- (g) | | -228.953 | -227.346 | ± 0.0021 | kJ/mol | 35.45325 ± 0.00090 | 16887-00-6*0 | 27.2 | Chloroniumyl ion | [HCl]+ (g) | | 1137.797 | 1137.731 | ± 0.0051 | kJ/mol | 36.46009 ± 0.00090 | 12258-94-5*0 | 23.4 | Hydrogen chloride | HCl (aq) | | | -166.991 | ± 0.023 | kJ/mol | 36.46064 ± 0.00090 | 7647-01-0*800 | 23.4 | Chloride | Cl- (aq) | | | -166.991 | ± 0.023 | kJ/mol | 35.45325 ± 0.00090 | 16887-00-6*800 | 22.6 | Hydrogen chloride | HCl (aq, 2439 H2O) | | | -166.712 | ± 0.024 | kJ/mol | 36.46064 ± 0.00090 | 7647-01-0*951 | 22.5 | Hydrogen chloride | HCl (aq, 2000 H2O) | | | -166.683 | ± 0.024 | kJ/mol | 36.46064 ± 0.00090 | 7647-01-0*841 | 22.2 | Hydrogen chloride | HCl (aq, 3000 H2O) | | | -166.741 | ± 0.024 | kJ/mol | 36.46064 ± 0.00090 | 7647-01-0*842 | 22.2 | Hydrogen chloride | HCl (aq, 1000 H2O) | | | -166.565 | ± 0.024 | kJ/mol | 36.46064 ± 0.00090 | 7647-01-0*839 | 22.1 | Hydrogen chloride | HCl (aq, 600 H2O) | | | -166.452 | ± 0.024 | kJ/mol | 36.46064 ± 0.00090 | 7647-01-0*834 | 21.9 | Hydrogen chloride | HCl (aq, 200 H2O) | | | -166.105 | ± 0.024 | kJ/mol | 36.46064 ± 0.00090 | 7647-01-0*830 |
|
Most Influential reactions involving HCl (g)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.962 | 4364.3 | CH3Br (g) + HCl (g) → CH3Cl (g) + HBr (g)  | ΔrG°(449.3 K) = 10.036 ± 0.019 kJ/mol | Bak 1948, 3rd Law | 0.770 | 4272.1 | CH2CCl2 (g) + HCl (g) → CH3CCl3 (g)  | ΔrG°(373.65 K) = 2.33 ± 0.45 kJ/mol | Hu 1972, 3rd Law, est unc | 0.559 | 673.1 | HCl (g) → H+ (g) + Cl- (g)  | ΔrH°(0 K) = 116289.0 ± 0.6 cm-1 | Martin 1998, note HCl | 0.475 | 4184.1 | CH2CH2 (g) + HCl (g) → CH3CH2Cl (g)  | ΔrG°(471 K) = -10.007 ± 0.350 kJ/mol | Lane 1953, 3rd Law | 0.390 | 4258.1 | CH3CHCl2 (cr,l) → CH2CHCl (g) + HCl (g)  | ΔrH°(308 K) = 93.24 ± 0.7 kJ/mol | Levanova 1976, Manion 2002, 2nd Law | 0.341 | 4233.1 | CHCl2CCl3 (cr,l) → CCl2CCl2 (l) + HCl (g)  | ΔrH°(298.15 K) = 11.3 ± 1.0 kcal/mol | Kirkbride 1956, est unc | 0.324 | 4255.2 | CH3CHCl2 (g) → CH2CHCl (g) + HCl (g)  | ΔrG°(420.5 K) = 0.8 ± 0.7 kJ/mol | Levanova 1976, Manion 2002, 3rd Law | 0.322 | 668.1 | HCl (g) → [HCl]+ (g)  | ΔrH°(0 K) = 102801.5 ± 1 cm-1 | Drescher 1993, note HCl | 0.264 | 687.1 | HCl (g) → HCl (aq)  | ΔrH°(298.15 K) = -17.884 ± 0.010 kcal/mol | Gunn 1963, Gunn 1964, as quoted by CODATA Key Vals, Vanderzee 1963 | 0.258 | 669.7 | [HCl]- (g) → HCl (g)  | ΔrH°(0 K) = -0.678 ± 0.050 eV | Ruscic W1RO | 0.248 | 673.2 | HCl (g) → H+ (g) + Cl- (g)  | ΔrH°(0 K) = 116287.7 ± 0.9 cm-1 | Hu 2003, note HCl | 0.246 | 899.4 | [ClOH2]+ (g) + HCl (g) → HOCl (g) + [HClH]+ (g)  | ΔrH°(0 K) = 18.82 ± 0.8 kcal/mol | Ruscic W1RO | 0.201 | 4279.1 | CHCl2CHCl2 (cr,l) → CHClCCl2 (l) + HCl (g)  | ΔrH°(298.15 K) = 14.4 ± 1.0 kcal/mol | Kirkbride 1956, est unc | 0.201 | 1051.10 | HOBr (g) + HCl (g) → HOCl (g) + HBr (g)  | ΔrH°(0 K) = 9.94 ± 0.25 kcal/mol | Trogolo 2015, est unc | 0.199 | 689.1 | HCl (g) → HCl (aq, 2439 H2O)  | ΔrH°(298.15 K) = -17.810 ± 0.012 kcal/mol | Vanderzee 1963 | 0.185 | 687.4 | HCl (g) → HCl (aq)  | ΔrG°(298.15 K) = -36.009 ± 0.050 kJ/mol | Aston 1955, as quoted by CODATA Key Vals | 0.185 | 687.5 | HCl (g) → HCl (aq)  | ΔrG°(298.15 K) = -36.015 ± 0.050 kJ/mol | Bates 1919, as quoted by CODATA Key Vals | 0.175 | 4254.2 | HCCH (g) + HCl (g) → CH2CHCl (g)  | ΔrH°(0 K) = -107.17 ± 0.70 kJ/mol | Harding 2007 | 0.173 | 669.4 | [HCl]- (g) → HCl (g)  | ΔrH°(0 K) = -0.722 ± 0.061 eV | Ruscic G4 | 0.164 | 4250.7 | CH2CHCl (g) + H2 (g) → CH2CH2 (g) + HCl (g)  | ΔrH°(0 K) = -60.54 ± 0.70 kJ/mol | Harding 2007 |
|
|
References (for your convenience, also available in RIS and BibTex format)
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.122g of the Thermochemical Network (2019); available at ATcT.anl.gov |
4
|
|
J. P. Porterfield, D. H. Bross, B. Ruscic, J. H. Thorpe, T. L. Nguyen, J. H. Baraban, J. F. Stanton, J. W. Daily, and G. B. Ellison,
Thermal Decomposition of Potential Ester Biofuels, Part I: Methyl Acetate and Methyl Butanoate.
J. Chem. Phys. A 121, 4658-4677 (2017)
[DOI: 10.1021/acs.jpca.7b02639] (Veronica Vaida Festschrift)
|
5
|
|
Y.-C. Chang, B. Xiong, D. H. Bross, B. Ruscic, and C. Y. Ng,
A Vacuum Ultraviolet laser Pulsed Field Ionization-Photoion Study of Methane (CH4): Determination of the Appearance Energy of Methylium From Methane with Unprecedented Precision and the Resulting Impact on the Bond Dissociation Energies of CH4 and CH4+.
Phys. Chem. Chem. Phys. 19, 9592-9605 (2017)
[DOI: 10.1039/c6cp08200a] (part of 2017 PCCP Hot Articles collection)
|
6
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|