Selected ATcT [1, 2] enthalpy of formation based on version 1.122g of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122e [4] to include results centered on the determination of the appearance energy of CH3+ from CH4. [5].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
BenzeneC6H6 (cr,l)c1ccccc150.7149.16± 0.23kJ/mol78.1118 ±
0.0048
71-43-2*500

Top contributors to the provenance of ΔfH° of C6H6 (cr,l)

The 20 contributors listed below account only for 85.8% of the provenance of ΔfH° of C6H6 (cr,l).
A total of 46 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
20.24906.3 C6H6 (cr,l) + 15/2 O2 (g) → 6 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -780.97 ± 0.09 kcal/molCoops 1947, Coops 1946
16.44906.4 C6H6 (cr,l) + 15/2 O2 (g) → 6 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -780.92 ± 0.10 kcal/molGood 1969
16.44906.1 C6H6 (cr,l) + 15/2 O2 (g) → 6 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -780.98 ± 0.10 kcal/molProsen 1945a, as quoted by Cox 1970
11.34906.2 C6H6 (cr,l) + 15/2 O2 (g) → 6 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -780.96 ± 0.12 kcal/molCox 1970
4.7118.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
4.41764.7 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.464 ± 0.024 kJ/molHawtin 1966, note CO2e
1.71764.5 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.468 ± 0.038 kJ/molFraser 1952, note CO2f
1.71764.4 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.462 ± 0.038 kJ/molLewis 1965, note CO2d
1.33135.1 C6H6 (g) + 3 H2 (g) → CH2(CH2CH2CH2CH2CH2) (g) ΔrH°(355. K) = -49.84 ± 0.15 (×1.834) kcal/molKistiakowsky 1936
1.21764.9 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -94.051 ± 0.011 kcal/molProsen 1944a, Cox 1970, NBS TN270, NBS Tables 1989
1.01888.1 H2 (g) C (graphite) → CH4 (g) ΔrG°(1165 K) = 37.521 ± 0.068 kJ/molSmith 1946, note COf, 3rd Law
0.81764.6 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.462 ± 0.056 kJ/molHawtin 1966, note CO2e
0.74894.7 C6H6 (g) → 6 C (g) + 6 H (g) ΔrH°(0 K) = 5463.0 ± 1.8 kJ/molHarding 2011
0.61764.2 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.498 ± 0.062 kJ/molDewey 1938, note CO2, Rossini 1938, note CO2c
0.61764.3 C (graphite) O2 (g) → CO2 (g) ΔrH°(303.15 K) = -393.447 ± 0.064 kJ/molJessup 1938, note CO2a, Rossini 1938, note CO2c
0.51887.4 CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -890.61 ± 0.21 kJ/molDale 2002
0.45110.1 C6H5F (cr,l) + 7 O2 (g) → 6 CO2 (g) HF (aq, 60 H2O) + 2 H2O (cr,l) ΔrH°(298.15 K) = -741.88 ± 0.29 kcal/molGood 1956
0.34894.4 C6H6 (g) → 6 C (g) + 6 H (g) ΔrH°(0 K) = 1306.17 ± 0.60 kcal/molKarton 2009a
0.31887.6 CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -890.44 ± 0.26 kJ/molGOMB Ref Calorimeter, Alexandrov 2002
0.31764.1 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.560 ± 0.055 (×1.576) kJ/molProsen 1944, note CO2b

Top 10 species with enthalpies of formation correlated to the ΔfH° of C6H6 (cr,l)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
99.8 BenzeneC6H6 (g)c1ccccc1100.6283.10± 0.23kJ/mol78.1118 ±
0.0048
71-43-2*0
99.8 Benzene cation[C6H6]+ (g)c1ccc(cc1)[H+]992.50976.03± 0.23kJ/mol78.1113 ±
0.0048
34504-50-2*0
55.4 Phenide[C6H5]- (g)c1cccc[c-]1244.37230.95± 0.39kJ/mol77.1044 ±
0.0048
30922-78-2*0
37.4 Succinic acid(CH2COOH)2 (cr,l)OC(=O)CCC(=O)O-918.55-940.28± 0.13kJ/mol118.0880 ±
0.0034
110-15-6*500
36.4 PhenylC6H5 (g)c1cccc[c]1350.24336.88± 0.54kJ/mol77.1039 ±
0.0048
2396-01-2*0
35.5 Carbon dioxideCO2 (g)C(=O)=O-393.108-393.474± 0.015kJ/mol44.00950 ±
0.00100
124-38-9*0
33.6 WaterH2O (cr,l)O-286.302-285.830± 0.027kJ/mol18.01528 ±
0.00033
7732-18-5*500
33.6 WaterH2O (l)O-285.830± 0.027kJ/mol18.01528 ±
0.00033
7732-18-5*590
33.6 Oxonium[H3O]+ (aq)[OH3+]-285.830± 0.027kJ/mol19.02267 ±
0.00037
13968-08-6*800
33.6 WaterH2O (l, eq.press.)O-285.832± 0.027kJ/mol18.01528 ±
0.00033
7732-18-5*589

Most Influential reactions involving C6H6 (cr,l)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.5564904.3 C6H6 (cr,l) → C6H6 (g) ΔrH°(298.15 K) = 33.935 ± 0.015 kJ/molTodd 1978
0.2694906.3 C6H6 (cr,l) + 15/2 O2 (g) → 6 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -780.97 ± 0.09 kcal/molCoops 1947, Coops 1946
0.2184906.4 C6H6 (cr,l) + 15/2 O2 (g) → 6 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -780.92 ± 0.10 kcal/molGood 1969
0.2184906.1 C6H6 (cr,l) + 15/2 O2 (g) → 6 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -780.98 ± 0.10 kcal/molProsen 1945a, as quoted by Cox 1970
0.1984904.11 C6H6 (cr,l) → C6H6 (g) ΔrH°(314.74 K) = 7.905 ± 0.006 kcal/molScott 1947
0.1565152.1 C6H5Br (cr,l) HCl (g) → C6H6 (cr,l) + 1/2 Br2 (cr,l) + 1/2 Cl2 (g) ΔrH°(298.15 K) = 19.98 ± 0.78 kcal/molChernick 1956, Hartley 1951
0.1514906.2 C6H6 (cr,l) + 15/2 O2 (g) → 6 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -780.96 ± 0.12 kcal/molCox 1970
0.1115165.1 C6H5I (cr,l) HCl (g) → C6H6 (cr,l) + 1/2 I2 (cr,l) + 1/2 Cl2 (g) ΔrH°(298.15 K) = 7.13 ± 0.75 kcal/molChernick 1956, Hartley 1951
0.0964904.4 C6H6 (cr,l) → C6H6 (g) ΔrH°(298.15 K) = 33.945 ± 0.036 kJ/molOsborne 1947, note unc2
0.0684904.7 C6H6 (cr,l) → C6H6 (g) ΔrH°(298.15 K) = 33.981 ± 0.040 (×1.067) kJ/molSvoboda 1973, ThermoData 2004
0.0245132.1 C6H6 (cr,l) Cl2 (g) → C6H5Cl (cr,l) HCl (g) ΔrH°(298.15 K) = -32.0 ± 0.9 (×1.022) kcal/molKirkbride 1956, Cox 1970
0.0224904.2 C6H6 (cr,l) → C6H6 (g) ΔrH°(298.15 K) = 33.901 ± 0.075 kJ/molThermoData 2004
0.0174904.1 C6H6 (cr,l) → C6H6 (g) ΔrH°(298.15 K) = 33.92 ± 0.085 kJ/molMajer 1985
0.0124904.5 C6H6 (cr,l) → C6H6 (g) ΔrH°(298.15 K) = 34.00 ± 0.10 kJ/molKonicek 1973
0.0054904.13 C6H6 (cr,l) → C6H6 (g) ΔrH°(293.097 K) = 34.069 ± 0.076 (×1.915) kJ/molYarym-Agaev 1950
0.0044904.8 C6H6 (cr,l) → C6H6 (g) ΔrH°(298.15 K) = 8.090 ± 0.04 kcal/molAndon 1957, est unc
0.0045164.1 C6H5I (cr,l) HI (g) → C6H6 (cr,l) I2 (cr,l) ΔrH°(298.15 K) = -18.9 ± 3.8 kcal/molGraham 1955, Nichol 1952, Semb 1935, note unc2
0.0034904.6 C6H6 (cr,l) → C6H6 (g) ΔrH°(298.15 K) = 33.84 ± 0.20 kJ/molSabbah 1987
0.0024904.12 C6H6 (cr,l) → C6H6 (g) ΔrH°(350 K) = 31.40 ± 0.21 kJ/molNatarajan 1983, est unc
0.0024904.9 C6H6 (cr,l) → C6H6 (g) ΔrH°(293.15 K) = 8.126 ± 0.030 (×1.682) kcal/molYarym-Agaev 1950


References (for your convenience, also available in RIS and BibTex format)
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122g of the Thermochemical Network (2019); available at ATcT.anl.gov
4   J. P. Porterfield, D. H. Bross, B. Ruscic, J. H. Thorpe, T. L. Nguyen, J. H. Baraban, J. F. Stanton, J. W. Daily, and G. B. Ellison,
Thermal Decomposition of Potential Ester Biofuels, Part I: Methyl Acetate and Methyl Butanoate.
J. Chem. Phys. A 121, 4658-4677 (2017) [DOI: 10.1021/acs.jpca.7b02639] (Veronica Vaida Festschrift)
5   Y.-C. Chang, B. Xiong, D. H. Bross, B. Ruscic, and C. Y. Ng,
A Vacuum Ultraviolet laser Pulsed Field Ionization-Photoion Study of Methane (CH4): Determination of the Appearance Energy of Methylium From Methane with Unprecedented Precision and the Resulting Impact on the Bond Dissociation Energies of CH4 and CH4+.
Phys. Chem. Chem. Phys. 19, 9592-9605 (2017) [DOI: 10.1039/c6cp08200a] (part of 2017 PCCP Hot Articles collection)
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.