Selected ATcT [1, 2] enthalpy of formation based on version 1.122g of the Thermochemical Network [3] This version of ATcT results was generated from an expansion of version 1.122e [4] to include results centered on the determination of the appearance energy of CH3+ from CH4. [5].
|
Species Name |
Formula |
Image |
ΔfH°(0 K) |
ΔfH°(298.15 K) |
Uncertainty |
Units |
Relative Molecular Mass |
ATcT ID |
Iodobenzene cation | [C6H5I]+ (g) | | 1022.7 | 1007.2 | ± 1.0 | kJ/mol | 204.0078 ± 0.0048 | 38406-85-8*0 |
|
Representative Geometry of [C6H5I]+ (g) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of [C6H5I]+ (g)The 20 contributors listed below account only for 70.8% of the provenance of ΔfH° of [C6H5I]+ (g). A total of 52 contributors would be needed to account for 90% of the provenance.
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 16.8 | 5157.2 | C6H5I (g) → [C6H5]+ (g) + I (g)  | ΔrH°(0 K) = 11.178 ± 0.011 eV | Stevens 2009 | 8.4 | 5165.1 | C6H5I (cr,l) + HCl (g) → C6H6 (cr,l) + 1/2 I2 (cr,l) + 1/2 Cl2 (g)  | ΔrH°(298.15 K) = 7.13 ± 0.75 kcal/mol | Chernick 1956, Hartley 1951 | 4.3 | 5160.2 | C6H5I (g) → C6H5 (g) + I (g)  | ΔrH°(0 K) = 66.7 ± 1.0 kcal/mol | Kumaran 1997, est unc | 4.3 | 5160.3 | C6H5I (g) → C6H5 (g) + I (g)  | ΔrG°(1250 K) = 27.3 ± 1.0 kcal/mol | Kumaran 1997, 3rd Law, est unc | 3.8 | 5162.1 | 2 C6H5I (cr,l) + 29/2 O2 (g) → 12 CO2 (g) + 5 H2O (cr,l) + I2 (cr,l)  | ΔrH°(298.15 K) = -1526.32 ± 2.0 (×1.139) kcal/mol | Smith 1956 | 3.8 | 5155.1 | C6H5Cl (g) + I (g) → C6H5I (g) + Cl (g)  | ΔrH°(0 K) = 1.255 ± 0.048 eV | Stevens 2009 | 3.4 | 5163.1 | C6H5I (cr,l) + 1/2 Br2 (cr,l) → C6H5Br (cr,l) + 1/2 I2 (cr,l)  | ΔrH°(298.15 K) = -12.85 ± 0.55 kcal/mol | Chernick 1956, Hartley 1951 | 3.0 | 5160.5 | C6H5I (g) → C6H5 (g) + I (g)  | ΔrG°(1350 K) = 102.2 ± 5 kJ/mol | Heckmann 1996, 3rd Law, est unc | 3.0 | 5160.1 | C6H5I (g) → C6H5 (g) + I (g)  | ΔrH°(1100 K) = 281.9 ± 5 kJ/mol | Robaugh 1986, 2nd Law | 2.8 | 5157.1 | C6H5I (g) → [C6H5]+ (g) + I (g)  | ΔrH°(0 K) = 11.173 ± 0.027 eV | Stevens 2009 | 2.2 | 5155.2 | C6H5Cl (g) + I (g) → C6H5I (g) + Cl (g)  | ΔrH°(0 K) = 1.296 ± 0.063 eV | Stevens 2009 | 2.2 | 5152.1 | C6H5Br (cr,l) + HCl (g) → C6H6 (cr,l) + 1/2 Br2 (cr,l) + 1/2 Cl2 (g)  | ΔrH°(298.15 K) = 19.98 ± 0.78 kcal/mol | Chernick 1956, Hartley 1951 | 1.9 | 5174.1 | C6H5NO (g) → [C6H5]+ (g) + NO (g)  | ΔrH°(0 K) = 10.607 ± 0.020 eV | Stevens 2010a | 1.8 | 4910.9 | [C6H5]+ (g) → 6 C (g) + 5 H (g)  | ΔrH°(0 K) = 4198.8 ± 4 kJ/mol | Lau 2006 | 1.6 | 4908.14 | C6H5 (g) → [C6H5]+ (g)  | ΔrH°(0 K) = 8.261 ± 0.035 eV | Lau 2006 | 1.5 | 5160.6 | C6H5I (g) → C6H5 (g) + I (g)  | ΔrH°(1350 K) = 279.2 ± 7 kJ/mol | Heckmann 1996, 2nd Law, est unc | 1.5 | 5126.1 | C6H5Cl (g) → [C6H5]+ (g) + Cl (g)  | ΔrH°(0 K) = 12.428 ± 0.040 eV | Stevens 2009 | 1.3 | 4909.1 | [C6H5]- (g) → C6H5 (g)  | ΔrH°(0 K) = 1.096 ± 0.006 eV | Gunion 1992 | 1.2 | 5126.5 | C6H5Cl (g) → [C6H5]+ (g) + Cl (g)  | ΔrH°(0 K) = 286.7 ± 1 kcal/mol | Pratt 1981 | 1.2 | 4908.12 | C6H5 (g) → [C6H5]+ (g)  | ΔrH°(0 K) = 8.267 ± 0.040 eV | Ruscic W1RO |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of [C6H5I]+ (g) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 99.8 | Iodobenzene | C6H5I (g) | | 177.7 | 161.7 | ± 1.0 | kJ/mol | 204.0084 ± 0.0048 | 591-50-4*0 | 89.7 | Iodobenzene | C6H5I (cr,l) | | 112.8 | 112.9 | ± 1.1 | kJ/mol | 204.0084 ± 0.0048 | 591-50-4*500 | 64.6 | Phenylium | [C6H5]+ (g) | | 1148.46 | 1135.68 | ± 0.87 | kJ/mol | 77.1034 ± 0.0048 | 17333-73-2*0 | 64.6 | Phenylium | [C6H5]+ (g, singlet) | | 1148.46 | 1135.68 | ± 0.87 | kJ/mol | 77.1034 ± 0.0048 | 17333-73-2*2 | 40.2 | Bromobenzene | C6H5Br (g) | | 126.6 | 104.6 | ± 1.3 | kJ/mol | 157.0079 ± 0.0049 | 108-86-1*0 | 40.2 | Bromobenzene | C6H5Br (cr,l) | | | 59.9 | ± 1.3 | kJ/mol | 157.0079 ± 0.0049 | 108-86-1*500 | 40.1 | Bromobenzene cation | [C6H5Br]+ (g) | | 994.8 | 973.2 | ± 1.3 | kJ/mol | 157.0074 ± 0.0049 | 55450-33-4*0 | 27.7 | Phenylium | [C6H5]+ (g, triplet) | | 1251.1 | 1238.0 | ± 1.9 | kJ/mol | 77.1034 ± 0.0048 | 17333-73-2*1 | 25.4 | Nitrosobenzene | C6H5NO (g) | | 215.7 | 198.7 | ± 1.2 | kJ/mol | 107.1100 ± 0.0048 | 586-96-9*0 | 24.2 | Phenyl | C6H5 (g) | | 350.24 | 336.88 | ± 0.54 | kJ/mol | 77.1039 ± 0.0048 | 2396-01-2*0 |
|
Most Influential reactions involving [C6H5I]+ (g)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.969 | 5153.1 | C6H5I (g) → [C6H5I]+ (g)  | ΔrH°(0 K) = 70638 ± 5 cm-1 | Kwon 2002 | 0.025 | 5153.2 | C6H5I (g) → [C6H5I]+ (g)  | ΔrH°(0 K) = 8.754 ± 0.002 (×1.915) eV | Holland 2000a | 0.015 | 5158.1 | [C6H5I]+ (g) → [C6H5]+ (g) + I (g)  | ΔrH°(0 K) = 2.48 ± 0.06 (×1.114) eV | Dunbar 1984 | 0.010 | 5158.2 | [C6H5I]+ (g) → [C6H5]+ (g) + I (g)  | ΔrH°(0 K) = 2.41 ± 0.08 eV | Dunbar 1985, Dunbar 1984, est unc | 0.000 | 5153.8 | C6H5I (g) → [C6H5I]+ (g)  | ΔrH°(0 K) = 8.766 ± 0.02 eV | Potts 1980a, est unc, von Niessen 1982 | 0.000 | 5153.9 | C6H5I (g) → [C6H5I]+ (g)  | ΔrH°(0 K) = 8.77 ± 0.02 eV | Baer 1976 | 0.000 | 5153.7 | C6H5I (g) → [C6H5I]+ (g)  | ΔrH°(0 K) = 8.75 ± 0.02 eV | Klasinc 1983, est unc | 0.000 | 5153.5 | C6H5I (g) → [C6H5I]+ (g)  | ΔrH°(0 K) = 8.73 ± 0.02 (×1.414) eV | Bralsford 1960 | 0.000 | 5153.6 | C6H5I (g) → [C6H5I]+ (g)  | ΔrH°(0 K) = 8.73 ± 0.02 (×1.414) eV | Watanabe 1957 | 0.000 | 5153.4 | C6H5I (g) → [C6H5I]+ (g)  | ΔrH°(0 K) = 8.73 ± 0.03 eV | Watanabe 1962 | 0.000 | 5153.10 | C6H5I (g) → [C6H5I]+ (g)  | ΔrH°(0 K) = 8.73 ± 0.03 eV | Watanabe 1957 | 0.000 | 5153.11 | C6H5I (g) → [C6H5I]+ (g)  | ΔrH°(0 K) = 8.73 ± 0.04 eV | Sergeev 1970, note unc3 | 0.000 | 5154.7 | C6H5I (g) → [C6H5I]+ (g)  | ΔrH°(0 K) = 8.79 ± 0.05 eV | Fujisawa 1986, est unc | 0.000 | 5154.6 | C6H5I (g) → [C6H5I]+ (g)  | ΔrH°(0 K) = 8.73 ± 0.05 eV | Sergeev 1970, est unc | 0.000 | 5154.5 | C6H5I (g) → [C6H5I]+ (g)  | ΔrH°(0 K) = 8.70 ± 0.05 (×1.164) eV | Behan 1976 | 0.000 | 5154.3 | C6H5I (g) → [C6H5I]+ (g)  | ΔrH°(0 K) = 8.685 ± 0.05 (×1.477) eV | Momigny 1968, est unc | 0.000 | 5154.4 | C6H5I (g) → [C6H5I]+ (g)  | ΔrH°(0 K) = 8.685 ± 0.05 (×1.477) eV | Dannacher 1983, est unc | 0.000 | 5153.3 | C6H5I (g) → [C6H5I]+ (g)  | ΔrH°(0 K) = 8.67 ± 0.02 (×4.458) eV | Turner 1970, est unc | 0.000 | 5154.2 | C6H5I (g) → [C6H5I]+ (g)  | ΔrH°(0 K) = 8.67 ± 0.05 (×1.795) eV | Boschi 1974, est unc | 0.000 | 5154.1 | C6H5I (g) → [C6H5I]+ (g)  | ΔrH°(0 K) = 8.67 ± 0.05 (×1.795) eV | Sell 1978a, est unc |
|
|
References (for your convenience, also available in RIS and BibTex format)
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.122g of the Thermochemical Network (2019); available at ATcT.anl.gov |
4
|
|
J. P. Porterfield, D. H. Bross, B. Ruscic, J. H. Thorpe, T. L. Nguyen, J. H. Baraban, J. F. Stanton, J. W. Daily, and G. B. Ellison,
Thermal Decomposition of Potential Ester Biofuels, Part I: Methyl Acetate and Methyl Butanoate.
J. Chem. Phys. A 121, 4658-4677 (2017)
[DOI: 10.1021/acs.jpca.7b02639] (Veronica Vaida Festschrift)
|
5
|
|
Y.-C. Chang, B. Xiong, D. H. Bross, B. Ruscic, and C. Y. Ng,
A Vacuum Ultraviolet laser Pulsed Field Ionization-Photoion Study of Methane (CH4): Determination of the Appearance Energy of Methylium From Methane with Unprecedented Precision and the Resulting Impact on the Bond Dissociation Energies of CH4 and CH4+.
Phys. Chem. Chem. Phys. 19, 9592-9605 (2017)
[DOI: 10.1039/c6cp08200a] (part of 2017 PCCP Hot Articles collection)
|
6
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|