Selected ATcT [1, 2] enthalpy of formation based on version 1.202 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.176 in order to include species related to the thermochemistry of glycine[4].

Hydroxymethylium

Formula: [CH2OH]+ (g)
CAS RN: 18682-95-6
ATcT ID: 18682-95-6*0
SMILES: [CH2+]O
InChI: InChI=1S/CH3O/c1-2/h2H,1H2/q+1
InChIKey: NRCYHMDIJIIHBJ-UHFFFAOYSA-N
InChI: InChI=1S/CH2O/c1-2/h1H2/p+1
InChIKey: WSFSSNUMVMOOMR-UHFFFAOYSA-O
Hills Formula: C1H3O1+

2D Image:

[CH2+]O
Aliases: [CH2OH]+; Hydroxymethylium; Methylideneoxidanium; Hydroxymethyl cation; Hydroxymethyl ion (1+); Protonated formaldehyde; Formaldehyde, conjugate acid; CH2OH+; [H2COH]+; H2COH+; [OHCH2]+; OHCH2+; [HOCH2]+; HOCH2+
Relative Molecular Mass: 31.03337 ± 0.00088

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
717.75709.81± 0.18kJ/mol

3D Image of [CH2OH]+ (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of [CH2OH]+ (g)

The 20 contributors listed below account only for 73.3% of the provenance of ΔfH° of [CH2OH]+ (g).
A total of 201 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
23.73006.1 CH3OH (g) → [CH2OH]+ (g) H (g) ΔrH°(0 K) = 11.6454 ± 0.0017 eVBorkar 2011
16.13008.1 [CH2OH]+ (g) → CH2O (g) H+ (g) ΔrH°(0 K) = 704.98 ± 0.39 kJ/molCzako 2009
10.72958.2 CH3OH (g) + 3/2 O2 (g) → CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -182.72 ± 0.05 (×1.269) kcal/molRossini 1932a, Domalski 1972, Weltner 1951, Rossini 1934a, note old units, mw conversion
7.63006.2 CH3OH (g) → [CH2OH]+ (g) H (g) ΔrH°(0 K) = 11.649 ± 0.003 eVRuscic 1993
1.52960.1 CH3OH (g) → CH4 (g) O (g, singlet) ΔrH°(0 K) = 133.94 ± 0.17 kcal/molNguyen 2015a
1.42959.1 CH3OH (g) → CH3 (g) OH (g) ΔrH°(0 K) = 90.12 ± 0.17 kcal/molNguyen 2015a
1.32962.1 CH3OH (g) → CH2 (g, triplet) H2O (g) ΔrH°(0 K) = 81.77 ± 0.17 kcal/molNguyen 2015a
1.32961.1 CH3OH (g) → CH2 (g, singlet) H2O (g) ΔrH°(0 K) = 90.84 ± 0.17 kcal/molNguyen 2015a
1.13032.1 CH3OH (g) → CH2O (g) H2 (g) ΔrH°(0 K) = 20.28 ± 0.17 kcal/molNguyen 2015a
1.13000.3 CH2OH (g) → [CH2OH]+ (g) ΔrH°(0 K) = 7.553 ± 0.006 (×1.576) eVRuscic 1991, Ruscic 1991a, Litorja 1998a
0.93078.6 CH3OH (g) → HCOH (g, trans) H2 (g) ΔrH°(0 K) = 72.44 ± 0.17 kcal/molNguyen 2015a
0.92966.1 CH3OH (cr,l) + 3/2 O2 (g) → CO2 (g) + 2 H2O (cr,l) ΔrH°(303.15 K) = -725.36 ± 0.13 (×6.874) kJ/molChao 1965, mw conversion
0.84114.1 CH3OH (g) [CH3CHOH]+ (g) → CH3CH2OH (g) [CH2OH]+ (g) ΔrH°(0 K) = 0.848 ± 0.006 eVRuscic 1993, Ruscic 1994c
0.7125.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
0.72376.1 H2 (g) C (graphite) → CH4 (g) ΔrG°(1165 K) = 37.521 ± 0.068 kJ/molSmith 1946, note COf, 3rd Law
0.63100.11 [HCO]+ (g) → H+ (g) CO (g) ΔrH°(0 K) = 586.51 ± 0.2 kJ/molCzako 2008
0.63002.9 [CH2OH]+ (g) → C (g) + 3 H (g) O (g) ΔrH°(0 K) = 212.63 ± 0.50 kcal/molMatus 2007
0.52671.8 CH3NH2 (g) H2O (g) → CH3OH (g) NH3 (g) ΔrH°(0 K) = 4.07 ± 0.25 kcal/molKarton 2011
0.52951.11 CH3OH (g) → 4 H (g) C (g) O (g) ΔrH°(0 K) = 480.94 ± 0.30 kcal/molKarton 2011
0.53007.1 CH2OH (g) → CH2O (g) H (g) ΔrH°(0 K) = 10160 ± 70 cm-1Ryazanov 2012

Top 10 species with enthalpies of formation correlated to the ΔfH° of [CH2OH]+ (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
68.6 MethanolCH3OH (g)CO-189.96-200.84± 0.14kJ/mol32.04186 ±
0.00090
67-56-1*0
67.0 MethanolCH3OH (cr,l)CO-235.20-238.54± 0.15kJ/mol32.04186 ±
0.00090
67-56-1*500
29.3 Methanol cation[CH3OH]+ (g)[CH3+]O856.89846.57± 0.32kJ/mol32.04131 ±
0.00090
12538-91-9*0
28.2 HydroxymethylCH2OH (g)[CH2]O-10.10-16.41± 0.28kJ/mol31.03392 ±
0.00088
2597-43-5*0
26.9 MethoxyCH3O (g)C[O]28.9821.61± 0.26kJ/mol31.03392 ±
0.00088
2143-68-2*0
26.8 Methoxide[CH3O]- (g)C[O-]-122.41-130.13± 0.26kJ/mol31.03447 ±
0.00088
3315-60-4*0
19.1 FormaldehydeCH2O (g)C=O-105.380-109.220± 0.094kJ/mol30.02598 ±
0.00087
50-00-0*0
19.1 FormaldehydeCH2O (g, singlet)C=O-105.380-109.220± 0.094kJ/mol30.02598 ±
0.00087
50-00-0*2
19.1 FormaldehydeCH2O (g, para singlet)C=O-105.380-109.220± 0.094kJ/mol30.02598 ±
0.00087
50-00-0*21
19.1 FormaldehydeCH2O (g, ortho singlet)C=O-105.254-109.220± 0.094kJ/mol30.02598 ±
0.00087
50-00-0*22

Most Influential reactions involving [CH2OH]+ (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.6113006.1 CH3OH (g) → [CH2OH]+ (g) H (g) ΔrH°(0 K) = 11.6454 ± 0.0017 eVBorkar 2011
0.4052765.1 HCN (g) [CH2OH]+ (g) → [HCNH]+ (g) CH2O (g) ΔrG°(300 K) = 0.5 ± 0.5 kcal/molWolf 1977, est unc
0.3304114.1 CH3OH (g) [CH3CHOH]+ (g) → CH3CH2OH (g) [CH2OH]+ (g) ΔrH°(0 K) = 0.848 ± 0.006 eVRuscic 1993, Ruscic 1994c
0.2173008.1 [CH2OH]+ (g) → CH2O (g) H+ (g) ΔrH°(0 K) = 704.98 ± 0.39 kJ/molCzako 2009
0.1963006.2 CH3OH (g) → [CH2OH]+ (g) H (g) ΔrH°(0 K) = 11.649 ± 0.003 eVRuscic 1993
0.1724300.5 [CH2COH]+ (g, singlet) CH2O (g) → CH2CO (g, singlet) [CH2OH]+ (g) ΔrH°(0 K) = -15.35 ± 0.8 kcal/molRuscic W1RO
0.1104300.2 [CH2COH]+ (g, singlet) CH2O (g) → CH2CO (g, singlet) [CH2OH]+ (g) ΔrH°(0 K) = -15.02 ± 1.0 kcal/molRuscic G4
0.1104300.4 [CH2COH]+ (g, singlet) CH2O (g) → CH2CO (g, singlet) [CH2OH]+ (g) ΔrH°(0 K) = -15.75 ± 1.0 kcal/molRuscic CBS-n
0.1047555.5 [CH3C(OH)CH3]+ (g) CH2O (g) → CH3C(O)CH3 (g) [CH2OH]+ (g) ΔrH°(0 K) = 24.50 ± 0.8 kcal/molRuscic W1RO
0.0943000.3 CH2OH (g) → [CH2OH]+ (g) ΔrH°(0 K) = 7.553 ± 0.006 (×1.576) eVRuscic 1991, Ruscic 1991a, Litorja 1998a
0.0764300.1 [CH2COH]+ (g, singlet) CH2O (g) → CH2CO (g, singlet) [CH2OH]+ (g) ΔrH°(0 K) = -15.14 ± 1.2 kcal/molRuscic G3X
0.0733016.9 [CH2OH]+ (g) → [CH3O]+ (g) ΔrH°(0 K) = 82.70 ± 0.50 kcal/molMatus 2007
0.0677555.2 [CH3C(OH)CH3]+ (g) CH2O (g) → CH3C(O)CH3 (g) [CH2OH]+ (g) ΔrH°(0 K) = 24.40 ± 1.0 kcal/molRuscic G4
0.0677555.4 [CH3C(OH)CH3]+ (g) CH2O (g) → CH3C(O)CH3 (g) [CH2OH]+ (g) ΔrH°(0 K) = 24.32 ± 1.0 kcal/molRuscic CBS-n
0.0654300.3 [CH2COH]+ (g, singlet) CH2O (g) → CH2CO (g, singlet) [CH2OH]+ (g) ΔrH°(0 K) = -14.97 ± 1.3 kcal/molRuscic CBS-n
0.0467555.1 [CH3C(OH)CH3]+ (g) CH2O (g) → CH3C(O)CH3 (g) [CH2OH]+ (g) ΔrH°(0 K) = 24.50 ± 1.2 kcal/molRuscic G3X
0.0397555.3 [CH3C(OH)CH3]+ (g) CH2O (g) → CH3C(O)CH3 (g) [CH2OH]+ (g) ΔrH°(0 K) = 24.38 ± 1.3 kcal/molRuscic CBS-n
0.0313000.1 CH2OH (g) → [CH2OH]+ (g) ΔrH°(0 K) = 7.56 ± 0.01 (×1.646) eVDyke 1984, Baker 1995a
0.0213000.2 CH2OH (g) → [CH2OH]+ (g) ΔrH°(0 K) = 7.56 ± 0.02 eVTao 1992
0.0215021.1 CH3CH2CH2CH2OH (g) → [CH2OH]+ (g) CH3CHCH3 (g) ΔrH°(0 K) = 11.10 ± 0.03 (×1.067) eVTorma 2021


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.202 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   B. Ruscic and D. H. Bross
Accurate and Reliable Thermochemistry by Data Analysis of Complex Thermochemical Networks using Active Thermochemical Tables: The Case of Glycine Thermochemistry
Faraday Discuss. (in press) (2024) [DOI: 10.1039/D4FD00110A]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.