Selected ATcT [1, 2] enthalpy of formation based on version 1.202 of the Thermochemical Network [3]This version of ATcT results[3] was generated by additional expansion of version 1.176 in order to include species related to the thermochemistry of glycine[4].
|
Hydroxyl |
Formula: OH (g) |
CAS RN: 3352-57-6 |
ATcT ID: 3352-57-6*0 |
SMILES: [OH] |
InChI: InChI=1S/HO/h1H |
InChIKey: TUJKJAMUKRIRHC-UHFFFAOYSA-N |
Hills Formula: H1O1 |
2D Image: |
|
Aliases: OH; Hydroxyl; Oxidanyl; Hydroxyl radical; Hydroxy; Hydroxy radical; Hydroxide radical; Hydroxo radical; Oxygen hydride; Hydrogen oxide; HO |
Relative Molecular Mass: 17.00734 ± 0.00031 |
ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units |
---|
37.278 | 37.517 | ± 0.022 | kJ/mol |
|
3D Image of OH (g) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of OH (g)The 20 contributors listed below account only for 65.0% of the provenance of ΔfH° of OH (g). A total of 302 contributors would be needed to account for 90% of the provenance.
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 29.7 | 125.2 | 1/2 O2 (g) + H2 (g) → H2O (cr,l)  | ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/mol | Rossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930 | 8.7 | 2374.7 | CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (cr,l)  | ΔrH°(298.15 K) = -890.578 ± 0.078 kJ/mol | Schley 2010 | 8.2 | 2376.1 | 2 H2 (g) + C (graphite) → CH4 (g)  | ΔrG°(1165 K) = 37.521 ± 0.068 kJ/mol | Smith 1946, note COf, 3rd Law | 2.1 | 115.11 | H2O (g) → O (g) + 2 H (g)  | ΔrH°(0 K) = 917.80 ± 0.15 kJ/mol | Thorpe 2021 | 1.9 | 157.1 | OH (g) → [OH]+ (g)  | ΔrH°(0 K) = 104989 ± 5 (×2.327) cm-1 | Wiedmann 1992, note unc | 1.6 | 167.6 | H2O (g) → [OH]+ (g) + H (g)  | ΔrH°(0 K) = 18.1183 ± 0.0015 (×1.044) eV | Bodi 2014 | 1.4 | 152.1 | OH (g) → O (g) + H (g)  | ΔrH°(0 K) = 35580 ± 15 cm-1 | Sun 2020 | 1.3 | 1731.1 | N2 (g) + 3 H2O (cr,l) + 2 H+ (aq) → 3/2 O2 (g) + 2 [NH4]+ (aq)  | ΔrH°(298.15 K) = 141.292 ± 0.119 kcal/mol | Vanderzee 1972c | 1.2 | 169.1 | [OH]- (g) → O- (g) + H (g)  | ΔrH°(0 K) = 4.7796 ± 0.0010 (×2.044) eV | Martin 2001, est unc | 1.2 | 2374.4 | CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (cr,l)  | ΔrH°(298.15 K) = -890.61 ± 0.21 kJ/mol | Dale 2002 | 1.0 | 167.7 | H2O (g) → [OH]+ (g) + H (g)  | ΔrH°(0 K) = 18.1190 ± 0.002 eV | Bodi 2014 | 0.8 | 167.5 | H2O (g) → [OH]+ (g) + H (g)  | ΔrH°(0 K) = 18.1177 ± 0.0015 (×1.445) eV | Bodi 2014 | 0.8 | 175.1 | [OH]+ (g) → O+ (g) + H (g)  | ΔrH°(0 K) = 40412.0 ± 2.2 cm-1 | Moselhy 1975, note unc | 0.7 | 2374.8 | CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (cr,l)  | ΔrH°(298.15 K) = -890.482 ± 0.260 kJ/mol | Haloua 2015 | 0.7 | 2374.6 | CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (cr,l)  | ΔrH°(298.15 K) = -890.44 ± 0.26 kJ/mol | GOMB Ref Calorimeter, Alexandrov 2002 | 0.7 | 2285.3 | CO (g) + H2O (g) → CO2 (g) + H2 (g)  | ΔrG°(893 K) = -6.369 ± 0.283 kJ/mol | Meyer 1938, note COi, 3rd Law | 0.6 | 2278.2 | CO (g) → C+ (g) + O (g)  | ΔrH°(0 K) = 22.3713 ± 0.0015 eV | Ng 2007 | 0.5 | 1542.4 | NNO (g) + CO (g) → CO2 (g) + N2 (g)  | ΔrH°(293.15 K) = -365.642 ± 0.243 kJ/mol | Fenning 1933, note N2Oa | 0.5 | 225.4 | HOOH (g) → 2 H (g) + 2 O (g)  | ΔrH°(0 K) = 1054.84 ± 0.56 kJ/mol | Harding 2008 | 0.5 | 2471.1 | CH3CH3 (g) + 7/2 O2 (g) → 2 CO2 (g) + 3 H2O (cr,l)  | ΔrH°(298.15 K) = -1560.68 ± 0.25 (×1.354) kJ/mol | Pittam 1972 |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of OH (g) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 100.0 | Hydroxyde | [OH]- (g) | | -139.064 | -139.030 | ± 0.022 | kJ/mol | 17.00789 ± 0.00031 | 14280-30-9*0 | 99.8 | Water | H2O (g) | | -238.903 | -241.806 | ± 0.022 | kJ/mol | 18.01528 ± 0.00033 | 7732-18-5*0 | 99.8 | Water | H2O (g, para) | | -238.903 | -241.806 | ± 0.022 | kJ/mol | 18.01528 ± 0.00033 | 7732-18-5*2 | 99.8 | Water | H2O (g, ortho) | | -238.618 | -241.806 | ± 0.022 | kJ/mol | 18.01528 ± 0.00033 | 7732-18-5*1 | 99.8 | Oxonium | [H3O]+ (aq) | | | -285.801 | ± 0.022 | kJ/mol | 19.02267 ± 0.00037 | 13968-08-6*800 | 99.8 | Water | H2O (cr,l) | | -286.273 | -285.801 | ± 0.022 | kJ/mol | 18.01528 ± 0.00033 | 7732-18-5*500 | 99.8 | Water | H2O (cr, l, eq.press.) | | -286.275 | -285.802 | ± 0.022 | kJ/mol | 18.01528 ± 0.00033 | 7732-18-5*499 | 99.8 | Water | H2O (l) | | | -285.801 | ± 0.022 | kJ/mol | 18.01528 ± 0.00033 | 7732-18-5*590 | 99.8 | Water | H2O (l, eq.press.) | | | -285.802 | ± 0.022 | kJ/mol | 18.01528 ± 0.00033 | 7732-18-5*589 | 99.7 | Water | H2O (cr) | | -286.273 | -292.713 | ± 0.022 | kJ/mol | 18.01528 ± 0.00033 | 7732-18-5*510 |
|
Most Influential reactions involving OH (g)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.972 | 364.10 | HOOO (g) → OH (g) + O2 (g)  | ΔrG°(94.7 K) = 4.509 ± 0.128 kJ/mol | Le Picard 2010, 3rd Law, Tizniti 2010 | 0.916 | 244.1 | HOOH (g) → 2 OH (g)  | ΔrH°(0 K) = 17051.8 ± 3.4 cm-1 | Luo 1992 | 0.834 | 159.1 | [OH]- (g) → OH (g)  | ΔrH°(0 K) = 14740.982 ± 0.014 cm-1 | Goldfarb 2005, note unc, Delsart 2002 | 0.720 | 1040.1 | HOCl (g) → OH (g) + Cl (g)  | ΔrH°(0 K) = 19287.9 ± 0.7 cm-1 | Barnes 1997 | 0.701 | 210.3 | (H2O)2 (g) → [H3O]+ (g) + OH (g)  | ΔrH°(0 K) = 11.7556 ± 0.0020 eV | Bodi 2014 | 0.609 | 164.3 | H2O (g) → OH (g) + H (g)  | ΔrH°(0 K) = 41145.92 ± 0.12 cm-1 | Boyarkin 2013 | 0.394 | 2098.1 | HOONO (g, cis, cis) → OH (g) + ONO (g)  | ΔrH°(450 K) = 86.08 ± 0.54 kJ/mol | Golden 2003, Hippler 2002, 3rd Law | 0.389 | 164.2 | H2O (g) → OH (g) + H (g)  | ΔrH°(0 K) = 41145.94 ± 0.15 cm-1 | Maksyutenko 2006 | 0.341 | 2013.6 | HOON (g, trans) → OH (g) + NO (g)  | ΔrH°(0 K) = 25.6 ± 4 kJ/mol | Talipov 2013, est unc | 0.340 | 5109.2 | CH3C(O)OH (g) → OH (g) + [CH3CO]+ (g)  | ΔrH°(0 K) = 11.641 ± 0.008 eV | Shuman 2010 | 0.277 | 1040.2 | HOCl (g) → OH (g) + Cl (g)  | ΔrH°(0 K) = 19289.4 ± 0.7 (×1.61) cm-1 | Wedlock 1997 | 0.220 | 4960.10 | (OH)(CO) (g, vdW) → OH (g) + CO (g)  | ΔrH°(0 K) = 310 ± 150 cm-1 | Pond 2003, Marshall 2003, est unc | 0.220 | 4960.9 | (OH)(CO) (g, vdW) → OH (g) + CO (g)  | ΔrH°(0 K) = 330 ± 150 cm-1 | Lester 2001, est unc | 0.204 | 1269.1 | HOBr (g) + Cl (g) → BrCl (g) + OH (g)  | ΔrG°(298.15 K) = -10.14 ± 1.04 kJ/mol | Loewenstein 1984, Kukui 1996, Monks 1993a, Loewenstein 1984 | 0.191 | 4958.4 | HCO (g) + 2 OH (g) → HCOO (g, cis) + H2O (g)  | ΔrH°(0 K) = -1.93 ± 1.60 kcal/mol | Ruscic G4 | 0.172 | 4617.6 | CH2(OH)O (g, gauche) → CH2O (g) + OH (g)  | ΔrH°(0 K) = 90.51 ± 2.0 kJ/mol | Klippenstein 2017 | 0.166 | 4958.3 | HCO (g) + 2 OH (g) → HCOO (g, cis) + H2O (g)  | ΔrH°(0 K) = -2.69 ± 1.72 kcal/mol | Ruscic G3X | 0.161 | 10013.4 | CH3S(OH)CH3 (g) → CH3SCH3 (g) + OH (g)  | ΔrH°(0 K) = 8.80 ± 1.50 kcal/mol | Ruscic W1RO | 0.159 | 159.3 | [OH]- (g) → OH (g)  | ΔrH°(0 K) = 14741.02 ± 0.03 (×1.067) cm-1 | Smith 1997 | 0.155 | 710.9 | FOOF (g) + 2 OH (g) → HOOH (g) + 2 FO (g)  | ΔrH°(0 K) = -4.55 ± 0.25 kcal/mol | Karton 2009c |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.202 of the Thermochemical Network (2024); available at ATcT.anl.gov |
4
|
|
B. Ruscic and D. H. Bross
Accurate and Reliable Thermochemistry by Data Analysis of Complex Thermochemical Networks using Active Thermochemical Tables: The Case of Glycine Thermochemistry
Faraday Discuss. (in press) (2024)
[DOI: 10.1039/D4FD00110A]
|
5
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
6
|
|
B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019)
[DOI: 10.1016/B978-0-444-64087-1.00001-2]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|