Selected ATcT [1, 2] enthalpy of formation based on version 1.202 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.176 in order to include species related to the thermochemistry of glycine[4].

Methoxide

Formula: [CH3O]- (g)
CAS RN: 3315-60-4
ATcT ID: 3315-60-4*0
SMILES: C[O-]
InChI: InChI=1S/CH3O/c1-2/h1H3/q-1
InChIKey: NBTOZLQBSIZIKS-UHFFFAOYSA-N
Hills Formula: C1H3O1-

2D Image:

C[O-]
Aliases: [CH3O]-; Methoxide; Methoxide ion; Methoxyde; Methanolate; Methanolate anion; Methanolate ion (1-); Methoxide anion; Methoxide ion (1-); Methoxyde anion; Methoxyde ion (1-); Methoxy anion; Methoxy ion (1-); Methylate; CH3O-; [H3CO]-; H3CO-; [CH3(O)]-; CH3(O)-
Relative Molecular Mass: 31.03447 ± 0.00088

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
-122.41-130.13± 0.26kJ/mol

3D Image of [CH3O]- (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of [CH3O]- (g)

The 20 contributors listed below account only for 43.1% of the provenance of ΔfH° of [CH3O]- (g).
A total of 437 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
7.82986.9 CH3OH (g) → CH3O (g) H (g) ΔrH°(0 K) = 104.06 ± 0.17 kcal/molNguyen 2015a
5.73015.10 CH2OH (g) → CH3O (g) ΔrH°(0 K) = 9.47 ± 0.17 kcal/molNguyen 2015a
3.82993.1 CH3O (g) → CH3 (g) O (g) ΔrH°(0 K) = 87.8 ± 0.3 kcal/molOsborn 1995, Osborn 1997
3.02991.1 CH3OH (g) F- (g) → [CH3O]- (g) HF (g) ΔrH°(0 K) = 0.462 ± 0.003 (×4.177) eVDeTuri 1999, Ervin 2002
2.92958.2 CH3OH (g) + 3/2 O2 (g) → CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -182.72 ± 0.05 (×1.269) kcal/molRossini 1932a, Domalski 1972, Weltner 1951, Rossini 1934a, note old units, mw conversion
2.57022.1 [C6H5CH2]- (g) → C6H5CH2 (g) ΔrH°(0 K) = 0.912 ± 0.006 eVGunion 1992
2.02982.2 [CH3O]- (g) → CH3O (g) ΔrH°(0 K) = 12654 ± 6 cm-1Weichman 2017
1.72994.1 CH3O (g) → CH2O (g) H (g) ΔrH°(0 K) = 6950 ± 150 cm-1Dertinger 1995
1.52993.10 CH3O (g) → CH3 (g) O (g) ΔrH°(0 K) = 366.45 ± 2 kJ/molMarenich 2006, est unc
1.42984.9 [CH3O]- (g) → C (g) + 3 H (g) O (g) ΔrH°(0 K) = 413.01 ± 0.50 kcal/molMatus 2007
1.42980.11 CH3O (g) → C (g) + 3 H (g) O (g) ΔrH°(0 K) = 376.52 ± 0.3 (×1.61) kcal/molFeller 2008
1.32980.10 CH3O (g) → C (g) + 3 H (g) O (g) ΔrH°(0 K) = 376.49 ± 0.50 (×1.022) kcal/molMatus 2007
1.32994.10 CH3O (g) → CH2O (g) H (g) ΔrH°(0 K) = 79.62 ± 2 (×1.044) kJ/molMarenich 2006, est unc
1.02980.9 CH3O (g) → C (g) + 3 H (g) O (g) ΔrH°(0 K) = 1574.97 ± 2 (×1.215) kJ/molMarenich 2006, est unc
1.02987.9 CH3OH (g) → [CH3O]- (g) H+ (g) ΔrH°(0 K) = 381.8 ± 0.50 kcal/molMatus 2007
0.92986.10 CH3OH (g) → CH3O (g) H (g) ΔrH°(0 K) = 436.14 ± 2 kJ/molMarenich 2006, est unc
0.92994.11 CH3O (g) → CH2O (g) H (g) ΔrH°(0 K) = 6653 ± 200 cm-1Kamarchik 2012, est unc
0.83008.1 [CH2OH]+ (g) → CH2O (g) H+ (g) ΔrH°(0 K) = 704.98 ± 0.39 kJ/molCzako 2009
0.72983.9 [CH3O]+ (g) → C (g) + 3 H (g) O (g) ΔrH°(0 K) = 129.93 ± 0.50 kcal/molMatus 2007
0.63015.11 CH2OH (g) → CH3O (g) ΔrH°(0 K) = 9.62 ± 0.50 kcal/molMatus 2007

Top 10 species with enthalpies of formation correlated to the ΔfH° of [CH3O]- (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
96.9 MethoxyCH3O (g)C[O]28.9821.61± 0.26kJ/mol31.03392 ±
0.00088
2143-68-2*0
53.4 Benzylide[C6H5CH2]- (g)c1ccc(cc1)[CH2-]142.01123.10± 0.40kJ/mol91.1310 ±
0.0056
18860-15-6*0
36.4 MethanolCH3OH (g)CO-189.96-200.84± 0.14kJ/mol32.04186 ±
0.00090
67-56-1*0
35.5 MethanolCH3OH (cr,l)CO-235.20-238.54± 0.15kJ/mol32.04186 ±
0.00090
67-56-1*500
33.6 Methyloxoniumylidene[CH3O]+ (g)C[O+]1062.721054.91± 0.57kJ/mol31.03337 ±
0.00088
58157-09-8*0
28.9 HydroxymethylCH2OH (g)[CH2]O-10.10-16.41± 0.28kJ/mol31.03392 ±
0.00088
2597-43-5*0
26.8 Hydroxymethylium[CH2OH]+ (g)[CH2+]O717.75709.81± 0.18kJ/mol31.03337 ±
0.00088
18682-95-6*0
23.0 BenzylC6H5CH2 (g)c1ccc(cc1)[CH2]230.16211.35± 0.51kJ/mol91.1305 ±
0.0056
2154-56-5*0
22.8 Benzylium[C6H5CH2]+ (g)c1ccc(cc1)[CH2+]929.58910.09± 0.51kJ/mol91.1299 ±
0.0056
6711-19-9*0
20.1 EthoxyCH3CH2O (g, X 2A")CC[O]1.39-12.51± 0.42kJ/mol45.0605 ±
0.0017
2154-50-9*51

Most Influential reactions involving [CH3O]- (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.9887030.2 [C6H5CH2]- (g) CH3OH (g) → C6H5CH3 (g) [CH3O]- (g) ΔrG°(300 K) = 0.16 ± 0.02 kcal/molEllison 1996
0.8052982.2 [CH3O]- (g) → CH3O (g) ΔrH°(0 K) = 12654 ± 6 cm-1Weichman 2017
0.2893859.1 CH3CHCCH2 (g) [CH3O]- (g) → [CH3CCCH2]- (g) CH3OH (g) ΔrG°(298.15 K) = 5 ± 2 kJ/molde Visser 1999, est unc
0.2198960.5 SiH(CH3)3 (g) [CH3O]- (g) → [Si(CH3)3]- (g) CH3OH (g) ΔrH°(0 K) = 4.26 ± 0.8 kcal/molRuscic W1RO
0.1482844.3 CH3NC (g) [CH3O]- (g) → [CH2NC]- (g) CH3OH (g) ΔrG°(300 K) = -0.93 ± 0.5 kcal/molMatimba 1992, est unc
0.1408960.3 SiH(CH3)3 (g) [CH3O]- (g) → [Si(CH3)3]- (g) CH3OH (g) ΔrH°(0 K) = 3.31 ± 1.0 kcal/molRuscic G4
0.1282982.1 [CH3O]- (g) → CH3O (g) ΔrH°(0 K) = 12655 ± 15 cm-1Nee 2006
0.1078277.5 [CH2CCN]- (g) CH3OH (g) → CH2CHCN (g, singlet) [CH3O]- (g) ΔrH°(0 K) = 8.79 ± 0.8 kcal/molRuscic W1RO
0.0978960.2 SiH(CH3)3 (g) [CH3O]- (g) → [Si(CH3)3]- (g) CH3OH (g) ΔrH°(0 K) = 2.76 ± 1.2 kcal/molRuscic G3X
0.0828960.4 SiH(CH3)3 (g) [CH3O]- (g) → [Si(CH3)3]- (g) CH3OH (g) ΔrH°(0 K) = 3.92 ± 1.3 kcal/molRuscic CBS-n
0.0823017.8 [CH2OH]- (g) → [CH3O]- (g) ΔrH°(0 K) = -31.50 ± 1.2 kcal/molRuscic W1RO
0.0823017.7 [CH2OH]- (g) → [CH3O]- (g) ΔrH°(0 K) = -31.86 ± 1.2 kcal/molRuscic CBS-n
0.0693017.4 [CH2OH]- (g) → [CH3O]- (g) ΔrH°(0 K) = -31.57 ± 1.3 kcal/molRuscic G4
0.0688277.4 [CH2CCN]- (g) CH3OH (g) → CH2CHCN (g, singlet) [CH3O]- (g) ΔrH°(0 K) = 8.88 ± 1.0 kcal/molRuscic CBS-n
0.0688277.2 [CH2CCN]- (g) CH3OH (g) → CH2CHCN (g, singlet) [CH3O]- (g) ΔrH°(0 K) = 8.83 ± 1.0 kcal/molRuscic G4
0.0654184.1 [CH3CH2O]- (g) CH3OH (g) → [CH3O]- (g) CH3CH2OH (g) ΔrH°(0 K) = 0.129 ± 0.004 (×4.362) eVDeTuri 1999, Ervin 2002
0.0603017.3 [CH2OH]- (g) → [CH3O]- (g) ΔrH°(0 K) = -31.30 ± 1.4 kcal/molRuscic G3X
0.0582844.8 CH3NC (g) [CH3O]- (g) → [CH2NC]- (g) CH3OH (g) ΔrH°(0 K) = 0.55 ± 0.8 kcal/molRuscic W1RO
0.0544626.5 [CH2(OH)O]- (g, syn) CH3OH (g) → CH2(OH)2 (g, C2 gauche) [CH3O]- (g) ΔrH°(0 K) = 15.43 ± 0.8 kcal/molRuscic W1RO
0.0533544.1 CH2CCH2 (g) [CH3O]- (g) → CH3OH (g) [CH2CCH]- (g) ΔrG°(298.15 K) = -2.10 ± 0.35 (×1.957) kcal/molRobinson 1995


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.202 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   B. Ruscic and D. H. Bross
Accurate and Reliable Thermochemistry by Data Analysis of Complex Thermochemical Networks using Active Thermochemical Tables: The Case of Glycine Thermochemistry
Faraday Discuss. (in press) (2024) [DOI: 10.1039/D4FD00110A]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.