Selected ATcT [1, 2] enthalpy of formation based on version 1.202 of the Thermochemical Network [3]This version of ATcT results[3] was generated by additional expansion of version 1.176 in order to include species related to the thermochemistry of glycine[4].
|
Ammonia |
Formula: NH3 (g) |
CAS RN: 7664-41-7 |
ATcT ID: 7664-41-7*0 |
SMILES: N |
InChI: InChI=1S/H3N/h1H3 |
InChIKey: QGZKDVFQNNGYKY-UHFFFAOYSA-N |
Hills Formula: H3N1 |
2D Image: |
|
Aliases: NH3; Ammonia; Azane; Lambda1-azane; Nitrogen hydride; Nitrogen trihydride; Spirit of Hartshorn; Nitro-Sil; R717; UN1005; UN2073; UN2672 |
Relative Molecular Mass: 17.03056 ± 0.00022 |
ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units |
---|
-38.563 | -45.556 | ± 0.029 | kJ/mol |
|
3D Image of NH3 (g) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of NH3 (g)The 14 contributors listed below account for 90.2% of the provenance of ΔfH° of NH3 (g).
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 47.6 | 1662.1 | 1/2 N2 (g) + 3/2 H2 (g) → NH3 (g)  | ΔrH°(298.15 K) = -10.885 ± 0.010 kcal/mol | Larson 1923, Vanderzee 1972 | 24.3 | 1661.5 | 1/2 N2 (g) + 3/2 H2 (g) → NH3 (g)  | ΔrH°(298.15 K) = -10.875 ± 0.014 kcal/mol | Schulz 1966, Vanderzee 1972 | 9.7 | 1661.4 | 1/2 N2 (g) + 3/2 H2 (g) → NH3 (g)  | ΔrH°(298.15 K) = -10.910 ± 0.015 (×1.477) kcal/mol | Larson 1924, Vanderzee 1972 | 3.3 | 1662.8 | 1/2 N2 (g) + 3/2 H2 (g) → NH3 (g)  | ΔrG°(635 K) = 20.084 ± 0.157 kJ/mol | Schulz 1966, 3rd Law | 1.0 | 1731.1 | N2 (g) + 3 H2O (cr,l) + 2 H+ (aq) → 3/2 O2 (g) + 2 [NH4]+ (aq)  | ΔrH°(298.15 K) = 141.292 ± 0.119 kcal/mol | Vanderzee 1972c | 1.0 | 1662.3 | 1/2 N2 (g) + 3/2 H2 (g) → NH3 (g)  | ΔrG°(686 K) = 6.165 ± 0.068 kcal/mol | Larson 1923, 3rd Law, est unc | 0.6 | 1661.3 | 1/2 N2 (g) + 3/2 H2 (g) → NH3 (g)  | ΔrH°(823 K) = -53.88 ± 0.19 (×1.957) kJ/mol | Wittig 1959 | 0.6 | 1659.7 | 1/2 N2 (g) + 3/2 H2 (g) → NH3 (g)  | ΔrH°(776.15 K) = -12.656 ± 0.089 kcal/mol | Haber 1915 | 0.3 | 1660.7 | 1/2 N2 (g) + 3/2 H2 (g) → NH3 (g)  | ΔrG°(1075 K) = 16.924 ± 0.11 kcal/mol | Haber 1915c, 3rd Law, est unc | 0.3 | 1661.1 | 1/2 N2 (g) + 3/2 H2 (g) → NH3 (g)  | ΔrG°(1125 K) = 18.333 ± 0.11 kcal/mol | Haber 1915b, 3rd Law, est unc | 0.3 | 1725.3 | (NH4)NO3 (cr,l) → N2 (g) + 1/2 O2 (g) + 2 H2O (cr,l)  | ΔrH°(293.65 K) = -49.44 ± 0.06 kcal/mol | Becker 1934 | 0.2 | 1731.3 | N2 (g) + 3 H2O (cr,l) + 2 H+ (aq) → 3/2 O2 (g) + 2 [NH4]+ (aq)  | ΔrH°(298.15 K) = 141.226 ± 0.239 kcal/mol | Becker 1934, as quoted by CODATA Key Vals | 0.2 | 1650.4 | NH3 (g) → N (g) + 3 H (g)  | ΔrH°(0 K) = 1157.46 ± 0.56 kJ/mol | Harding 2008 | 0.2 | 1662.5 | 1/2 N2 (g) + 3/2 H2 (g) → NH3 (g)  | ΔrG°(700 K) = 6.530 ± 0.14 kcal/mol | Larson 1923, 3rd Law, est unc |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of NH3 (g) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 99.9 | Azanylium | [NH3]+ (g) | | 944.274 | 937.319 | ± 0.029 | kJ/mol | 17.03001 ± 0.00022 | 19496-55-0*0 | 51.1 | Ammonia | NH3 (aq, undissoc) | | | -80.884 | ± 0.053 | kJ/mol | 17.03056 ± 0.00022 | 7664-41-7*1000 | 49.2 | Ammonium | [NH4]+ (aq) | | | -133.076 | ± 0.056 | kJ/mol | 18.03795 ± 0.00029 | 14798-03-9*800 | 49.1 | Ammonia | NH3 (aq) | | | -77.033 | ± 0.056 | kJ/mol | 17.03056 ± 0.00022 | 7664-41-7*800 | 48.0 | Ammonium hydroxide | NH4OH (aq, undissoc) | | | -366.685 | ± 0.059 | kJ/mol | 35.04584 ± 0.00047 | 1336-21-6*1000 | 46.3 | Ammonium hydroxide | NH4OH (aq) | | | -362.833 | ± 0.061 | kJ/mol | 35.04584 ± 0.00047 | 1336-21-6*800 | 43.8 | Ammonium chloride | (NH4)Cl (cr) | | -311.555 | -314.717 | ± 0.062 | kJ/mol | 53.49120 ± 0.00095 | 12125-02-9*510 | 19.7 | Ammonium bromide | (NH4)Br (cr) | | -253.26 | -269.84 | ± 0.14 | kJ/mol | 97.9425 ± 0.0010 | 12124-97-9*510 | 18.5 | Azanylium | [NH2]+ (g) | | 1266.56 | 1264.49 | ± 0.11 | kJ/mol | 16.02207 ± 0.00016 | 15194-15-7*0 | 18.5 | Amidogen | NH2 (g) | | 188.92 | 186.03 | ± 0.11 | kJ/mol | 16.02262 ± 0.00016 | 13770-40-6*0 |
|
Most Influential reactions involving NH3 (g)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 1.000 | 1782.1 | (NH4)2O (cr,l) → NH4OH (cr,l) + NH3 (g)  | ΔrH°(187.4 K) = 7.523 ± 0.050 kcal/mol | Hildenbrand 1953, est unc | 0.999 | 1652.1 | NH3 (g) → [NH3]+ (g)  | ΔrH°(0 K) = 82158.751 ± 0.032 cm-1 | Seiler 2003 | 0.930 | 1721.1 | 3 NF2NF2 (g) + 16 NH3 (g) → 12 (NH4)F (cr,l) + 5 N2 (g)  | ΔrH°(298.15 K) = -4809.0 ± 2.7 kJ/mol | Armstrong 1959a | 0.775 | 1672.1 | NH4 (g) → NH3 (g) + H (g)  | ΔrH°(0 K) = -0.130 ± 0.005 eV | Aue 1972 | 0.712 | 6961.1 | C6H6 (g) + [NH2]- (g) → [C6H5]- (g) + NH3 (g)  | ΔrG°(300 K) = -3.557 ± 0.047 kcal/mol | Davico 1995 | 0.529 | 1726.1 | NH3 (g) → NH3 (aq, undissoc)  | ΔrH°(298.15 K) = -8.448 ± 0.015 kcal/mol | Vanderzee 1972 | 0.516 | 2696.1 | CH3NH2 (g) + [NH2]- (g) → [CH3NH]- (g) + NH3 (g)  | ΔrG°(296 K) = -0.51 ± 0.20 kcal/mol | MacKay 1976, note unc2 | 0.476 | 1662.1 | 1/2 N2 (g) + 3/2 H2 (g) → NH3 (g)  | ΔrH°(298.15 K) = -10.885 ± 0.010 kcal/mol | Larson 1923, Vanderzee 1972 | 0.438 | 3102.9 | CO (g) + [NH4]+ (g) → [HCO]+ (g) + NH3 (g)  | ΔrH°(0 K) = 259.89 ± 0.3 kJ/mol | Czako 2008 | 0.437 | 2573.1 | [CH2CH]- (g) + NH3 (g) → [NH2]- (g) + CH2CH2 (g)  | ΔrG°(298.15 K) = -4.54 ± 0.24 kcal/mol | Ervin 1990 | 0.421 | 1666.8 | [NH4]+ (g) → NH3 (g) + H+ (g)  | ΔrH°(0 K) = 846.40 ± 0.3 kJ/mol | Czako 2008 | 0.371 | 1655.9 | [NH3]- (g) → NH3 (g)  | ΔrH°(0 K) = -1.41 ± 0.04 eV | Puzzarini 2008 | 0.360 | 7486.2 | [NH(CHCHCHCHCH)]+ (g) + NH3 (g) → N(CHCHCHCHCH) (g) + [NH4]+ (g)  | ΔrG°(350 K) = 80.5 ± 2.0 kJ/mol | Hunter 1998, Taft 1986, est unc | 0.303 | 1936.1 | NH3 (g) + H2O (g) → HNOH (g, trans) + 3/2 H2 (g)  | ΔrH°(0 K) = 378.46 ± 1.5 kJ/mol | Klippenstein 2017 | 0.302 | 1687.1 | NH3 (g) → [NH2]+ (g) + H (g)  | ΔrH°(0 K) = 15.765 ± 0.002 eV | Song 2001a, note unc2 | 0.246 | 2718.1 | CH4 (g) + NH3 (g) → CH3N (g) + 2 H2 (g)  | ΔrH°(0 K) = 427.99 ± 2.0 kJ/mol | Klippenstein 2017 | 0.244 | 1903.1 | NH2OH (g, trans) + H2O (g) → HOOH (g) + NH3 (g)  | ΔrH°(0 K) = 24.9 ± 0.2 kcal/mol | Feller 2003, est unc | 0.243 | 1900.2 | NH3 (g) + H2O (g) → NH2OH (g, trans) + H2 (g)  | ΔrH°(0 K) = 58.4 ± 0.2 kcal/mol | Feller 2003, est unc | 0.243 | 1661.5 | 1/2 N2 (g) + 3/2 H2 (g) → NH3 (g)  | ΔrH°(298.15 K) = -10.875 ± 0.014 kcal/mol | Schulz 1966, Vanderzee 1972 | 0.237 | 1655.8 | [NH3]- (g) → NH3 (g)  | ΔrH°(0 K) = -1.349 ± 0.050 eV | Ruscic W1RO |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.202 of the Thermochemical Network (2024); available at ATcT.anl.gov |
4
|
|
B. Ruscic and D. H. Bross
Accurate and Reliable Thermochemistry by Data Analysis of Complex Thermochemical Networks using Active Thermochemical Tables: The Case of Glycine Thermochemistry
Faraday Discuss. (in press) (2024)
[DOI: 10.1039/D4FD00110A]
|
5
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
6
|
|
B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019)
[DOI: 10.1016/B978-0-444-64087-1.00001-2]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|