Selected ATcT [1, 2] enthalpy of formation based on version 1.176 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.172 to include species related to Criegee intermediates that are involved in several ongoing studies[4].

Hydroxyde

Formula: [OH]- (aq)
CAS RN: 14280-30-9
ATcT ID: 14280-30-9*800
SMILES: [OH-]
InChI: InChI=1S/H2O/h1H2/p-1
InChIKey: XLYOFNOQVPJJNP-UHFFFAOYSA-M
Hills Formula: H1O1-

2D Image:

[OH-]
Aliases: [OH]-; Hydroxyde; Hydroxyde ion; Hydroxide anion; Hydroxyde ion (1-); Hydroxyl anion; Hydroxyl ion (1-); Oxygen hydride anion; Oxygen hydride ion (1-); Hydroxy anion; Hydroxy ion (1-); HO-; OH-
Relative Molecular Mass: 17.00789 ± 0.00031

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
-229.761± 0.023kJ/mol

Top contributors to the provenance of ΔfH° of [OH]- (aq)

The 20 contributors listed below account only for 64.4% of the provenance of ΔfH° of [OH]- (aq).
A total of 303 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
28.7125.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
8.52373.7 CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -890.578 ± 0.078 kJ/molSchley 2010
7.72375.1 H2 (g) C (graphite) → CH4 (g) ΔrG°(1165 K) = 37.521 ± 0.068 kJ/molSmith 1946, note COf, 3rd Law
2.0115.11 H2O (g) → O (g) + 2 H (g) ΔrH°(0 K) = 917.80 ± 0.15 kJ/molThorpe 2021
1.8157.1 OH (g) → [OH]+ (g) ΔrH°(0 K) = 104989 ± 5 (×2.378) cm-1Wiedmann 1992, note unc
1.5167.6 H2O (g) → [OH]+ (g) H (g) ΔrH°(0 K) = 18.1183 ± 0.0015 (×1.067) eVBodi 2014
1.4152.1 OH (g) → O (g) H (g) ΔrH°(0 K) = 35580 ± 15 cm-1Sun 2020
1.31731.1 N2 (g) + 3 H2O (cr,l) + 2 H+ (aq) → 3/2 O2 (g) + 2 [NH4]+ (aq) ΔrH°(298.15 K) = 141.292 ± 0.119 kcal/molVanderzee 1972c
1.2169.1 [OH]- (g) → O- (g) H (g) ΔrH°(0 K) = 4.7796 ± 0.0010 (×2) eVMartin 2001, est unc
1.1217.1 H2O (l) → H+ (aq) [OH]- (aq) ΔrG°(298.15 K) = 79.891 ± 0.006 kJ/molArcis 2020, Marshall 1981
1.1217.3 H2O (l) → H+ (aq) [OH]- (aq) ΔrG°(298.15 K) = 79.892 ± 0.006 kJ/molArcis 2020, Bandura 2006
1.12373.4 CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -890.61 ± 0.21 kJ/molDale 2002
1.12268.11 CO (g) → C (g) O (g) ΔrH°(0 K) = 1071.92 ± 0.10 kJ/molThorpe 2021
0.9167.7 H2O (g) → [OH]+ (g) H (g) ΔrH°(0 K) = 18.1190 ± 0.002 eVBodi 2014
0.8167.5 H2O (g) → [OH]+ (g) H (g) ΔrH°(0 K) = 18.1177 ± 0.0015 (×1.477) eVBodi 2014
0.72373.8 CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -890.482 ± 0.260 kJ/molHaloua 2015
0.72373.6 CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -890.44 ± 0.26 kJ/molGOMB Ref Calorimeter, Alexandrov 2002
0.7175.1 [OH]+ (g) → O+ (g) H (g) ΔrH°(0 K) = 40412.0 ± 2.2 cm-1Moselhy 1975, note unc
0.72285.3 CO (g) H2O (g) → CO2 (g) H2 (g) ΔrG°(893 K) = -6.369 ± 0.283 kJ/molMeyer 1938, note COi, 3rd Law
0.51542.4 NNO (g) CO (g) → CO2 (g) N2 (g) ΔrH°(293.15 K) = -365.642 ± 0.243 kJ/molFenning 1933, note N2Oa

Top 10 species with enthalpies of formation correlated to the ΔfH° of [OH]- (aq)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
98.5 WaterH2O (l)O-285.804± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*590
98.5 WaterH2O (l, eq.press.)O-285.806± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*589
98.5 WaterH2O (cr,l)O-286.276-285.804± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*500
98.5 WaterH2O (cr, l, eq.press.)O-286.278-285.806± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*499
98.5 WaterH2O (g, ortho)O-238.622-241.810± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*1
98.5 WaterH2O (g, para)O-238.907-241.810± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*2
98.5 WaterH2O (g)O-238.907-241.810± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*0
98.5 Oxonium[H3O]+ (aq)[OH3+]-285.804± 0.022kJ/mol19.02267 ±
0.00037
13968-08-6*800
98.4 WaterH2O (cr)O-286.276-292.717± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*510
98.4 WaterH2O (cr, eq.press.)O-286.278-292.719± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*509

Most Influential reactions involving [OH]- (aq)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
1.0001738.1 NH4OH (aq) → [NH4]+ (aq) [OH]- (aq) ΔrH°(298.15 K) = 0 ± 0 cm-1triv
0.402217.1 H2O (l) → H+ (aq) [OH]- (aq) ΔrG°(298.15 K) = 79.891 ± 0.006 kJ/molArcis 2020, Marshall 1981
0.402217.3 H2O (l) → H+ (aq) [OH]- (aq) ΔrG°(298.15 K) = 79.892 ± 0.006 kJ/molArcis 2020, Bandura 2006
0.1621729.3 NH3 (aq, undissoc) H2O (cr,l) → [NH4]+ (aq) [OH]- (aq) ΔrH°(298.15 K) = 0.920 ± 0.010 kcal/molVanderzee 1972a
0.093222.3 H2O (l) → H+ (aq) [OH]- (aq) ΔrG°(298.15 K) = 79.877 ± 0.010 (×1.242) kJ/molHarned 1958, CODATA Key Vals
0.062536.1 HF (g) [OH]- (aq) → F- (aq) H2O (cr,l) ΔrH°(298.15 K) = -28.065 ± 0.10 (×1.354) kcal/molVanderzee 1971
0.0274361.1 CH2CO (g) [OH]- (aq) H+ (aq) → CH3C(O)OH (aq) ΔrH°(298.15 K) = -49.79 ± 0.41 kcal/molNuttall 1971
0.017217.9 H2O (l) → H+ (aq) [OH]- (aq) ΔrG°(298.15 K) = 79.907 ± 0.029 kJ/molChen 1994b, Arcis 2020
0.017217.7 H2O (l) → H+ (aq) [OH]- (aq) ΔrG°(298.15 K) = 79.881 ± 0.029 kJ/molBandura 2006, est unc
0.0153220.1 CO2 (g) [OH]- (aq) → [HOC(O)O]- (aq) ΔrH°(298.15 K) = -15.870 ± 0.033 (×1.682) kcal/molBerg 1978, Berg 1978a, CODATA Key Vals
0.015536.2 HF (g) [OH]- (aq) → F- (aq) H2O (cr,l) ΔrH°(298.15 K) = -27.93 ± 0.20 (×1.354) kcal/molVanderzee 1971
0.0101054.1 Cl2 (aq, undissoc) [OH]- (aq) → HOCl (aq, undissoc) Cl- (aq) ΔrG°(298.15 K) = -59.9 ± 1.0 kJ/molYadav 1981, Hikita 1973
0.009219.7 H2O (l) → H+ (aq) [OH]- (aq) ΔrG°(298.15 K) = 79.906 ± 0.040 kJ/molOlofsson 1975, as quoted by CODATA Key Vals
0.009222.6 H2O (l) → H+ (aq) [OH]- (aq) ΔrG°(298.15 K) = 79.923 ± 0.040 kJ/molPrue 1971, as quoted by CODATA Key Vals
0.009222.7 H2O (l) → H+ (aq) [OH]- (aq) ΔrG°(298.15 K) = 79.895 ± 0.040 kJ/molFisher 1972, as quoted by CODATA Key Vals
0.005218.1 H2O (l) → H+ (aq) [OH]- (aq) ΔrG°(298.15 K) = 79.872 ± 0.050 kJ/molSweeton 1974, as quoted by CODATA Key Vals
0.005218.3 H2O (l) → H+ (aq) [OH]- (aq) ΔrG°(298.15 K) = 79.872 ± 0.051 kJ/molArcis 2020, Busey 1976
0.0051729.2 NH3 (aq, undissoc) H2O (cr,l) → [NH4]+ (aq) [OH]- (aq) ΔrH°(298.15 K) = 0.865 ± 0.030 (×1.874) kcal/molPitzer 1937
0.004218.5 H2O (l) → H+ (aq) [OH]- (aq) ΔrG°(298.15 K) = 79.912 ± 0.057 kJ/molPalmer 1988
0.004217.5 H2O (l) → H+ (aq) [OH]- (aq) ΔrG°(298.15 K) = 79.883 ± 0.057 kJ/molMarshall 1981


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.176 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   T. L. Nguyen et al, ongoing studies (2024)
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.