Selected ATcT [1, 2] enthalpy of formation based on version 1.176 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.172 to include species related to Criegee intermediates that are involved in several ongoing studies[4].

Oxidanylium

Formula: [OH]+ (g)
CAS RN: 12259-29-9
ATcT ID: 12259-29-9*0
SMILES: [OH+]
InChI: InChI=1S/HO/h1H/q+1
InChIKey: MSCUNRCIQGLERU-UHFFFAOYSA-N
Hills Formula: H1O1+

2D Image:

[OH+]
Aliases: [OH]+; Oxidanylium; Oxoniumylidene; Oxoniumylidene ion; Oxoniumylidene cation; Oxoniumylidene ion (1+); Hydroxylium; Hydroxyl cation; Hydroxyl ion (1+); Oxygen hydride cation; Oxygen hydride ion (1+); Hydroxy cation; Hydroxy ion (1+); OH+; HO+
Relative Molecular Mass: 17.00679 ± 0.00031

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
1293.3621293.391± 0.026kJ/mol

3D Image of [OH]+ (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of [OH]+ (g)

The 2 contributors listed below account for 91.9% of the provenance of ΔfH° of [OH]+ (g).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
89.3175.1 [OH]+ (g) → O+ (g) H (g) ΔrH°(0 K) = 40412.0 ± 2.2 cm-1Moselhy 1975, note unc
2.6157.1 OH (g) → [OH]+ (g) ΔrH°(0 K) = 104989 ± 5 (×2.378) cm-1Wiedmann 1992, note unc

Top 10 species with enthalpies of formation correlated to the ΔfH° of [OH]+ (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
9.3 WaterH2O (g)O-238.907-241.810± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*0
9.3 Oxonium[H3O]+ (aq)[OH3+]-285.804± 0.022kJ/mol19.02267 ±
0.00037
13968-08-6*800
9.3 WaterH2O (cr,l)O-286.276-285.804± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*500
9.3 WaterH2O (cr, l, eq.press.)O-286.278-285.806± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*499
9.3 WaterH2O (l)O-285.804± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*590
9.3 WaterH2O (l, eq.press.)O-285.806± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*589
9.3 WaterH2O (g, ortho)O-238.622-241.810± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*1
9.3 WaterH2O (g, para)O-238.907-241.810± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*2
9.3 HydroxylOH (g)[OH]37.27437.514± 0.022kJ/mol17.00734 ±
0.00031
3352-57-6*0
9.3 Hydroxyde[OH]- (g)[OH-]-139.068-139.034± 0.022kJ/mol17.00789 ±
0.00031
14280-30-9*0

Most Influential reactions involving [OH]+ (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.900175.1 [OH]+ (g) → O+ (g) H (g) ΔrH°(0 K) = 40412.0 ± 2.2 cm-1Moselhy 1975, note unc
0.2341890.3 [OH]+ (g) N2 (g) → O (g) [NNH]+ (g) ΔrG°(298.15 K) = -1.13 ± 1.38 kJ/molBohme 1980, 3rd Law, note unc
0.2121890.4 [OH]+ (g) N2 (g) → O (g) [NNH]+ (g) ΔrG°(298.15 K) = -1.33 ± 1.45 kJ/molBohme 1980, 3rd Law, note unc
0.049157.1 OH (g) → [OH]+ (g) ΔrH°(0 K) = 104989 ± 5 (×2.378) cm-1Wiedmann 1992, note unc
0.041167.6 H2O (g) → [OH]+ (g) H (g) ΔrH°(0 K) = 18.1183 ± 0.0015 (×1.067) eVBodi 2014
0.028740.1 HOF (g) → [OH]+ (g) F (g) ΔrH°(0 K) = 15.069 ± 0.009 (×1.242) eVBerkowitz 1973c, est unc
0.026167.7 H2O (g) → [OH]+ (g) H (g) ΔrH°(0 K) = 18.1190 ± 0.002 eVBodi 2014
0.025646.8 [FO]+ (g) H (g) → [OH]+ (g) F (g) ΔrH°(0 K) = -45.98 ± 1.2 kcal/molRuscic W1RO
0.021167.5 H2O (g) → [OH]+ (g) H (g) ΔrH°(0 K) = 18.1177 ± 0.0015 (×1.477) eVBodi 2014
0.021646.4 [FO]+ (g) H (g) → [OH]+ (g) F (g) ΔrH°(0 K) = -46.11 ± 1.3 kcal/molRuscic G4
0.016646.3 [FO]+ (g) H (g) → [OH]+ (g) F (g) ΔrH°(0 K) = -46.44 ± 1.4 (×1.067) kcal/molRuscic G3X
0.014646.6 [FO]+ (g) H (g) → [OH]+ (g) F (g) ΔrH°(0 K) = -45.16 ± 1.6 kcal/molRuscic CBS-n
0.011646.7 [FO]+ (g) H (g) → [OH]+ (g) F (g) ΔrH°(0 K) = -43.20 ± 1.3 (×1.354) kcal/molRuscic CBS-n
0.009167.3 H2O (g) → [OH]+ (g) H (g) ΔrH°(0 K) = 18.1165 ± 0.0020 (×1.719) eVRuscic 2002
0.007167.2 H2O (g) → [OH]+ (g) H (g) ΔrH°(0 K) = 18.1161 ± 0.0035 (×1.091) eVRuscic 2002
0.004167.4 H2O (g) → [OH]+ (g) H (g) ΔrH°(0 K) = 18.115 ± 0.005 eVRuscic 2002
0.001167.1 H2O (g) → [OH]+ (g) H (g) ΔrH°(0 K) = 18.115 ± 0.008 eVMcCulloh 1976
0.001175.2 [OH]+ (g) → O+ (g) H (g) ΔrH°(0 K) = 40384 ± 60 cm-1Helm 1984, est unc
0.001157.6 OH (g) → [OH]+ (g) ΔrH°(0 K) = 13.01 ± 0.01 eVDyke 1979
0.001157.3 OH (g) → [OH]+ (g) ΔrH°(0 K) = 13.01 ± 0.01 eVvan Lonkhuyzen 1984b


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.176 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   T. L. Nguyen et al, ongoing studies (2024)
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.