Selected ATcT [1, 2] enthalpy of formation based on version 1.156 of the Thermochemical Network [3]This version of ATcT results[3] was generated by additional expansion of version 1.148 to include species relevant to a recent study of the oxidation of ethylene [4] as well as new measurements that led to refining the thermochemistry of CF and SiF and their cations [5].
|
Benzoic acid |
Formula: C6H5C(O)OH (g) |
CAS RN: 65-85-0 |
ATcT ID: 65-85-0*0 |
SMILES: c1ccc(cc1)C(=O)O |
InChI: InChI=1S/C7H6O2/c8-7(9)6-4-2-1-3-5-6/h1-5H,(H,8,9) |
InChIKey: WPYMKLBDIGXBTP-UHFFFAOYSA-N |
Hills Formula: C7H6O2 |
2D Image: |
|
Aliases: C6H5C(O)OH; Benzoic acid; Benzenecarboxylic acid; Benzenemethanoic acid |
Relative Molecular Mass: 122.1213 ± 0.0056 |
ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units |
---|
-274.33 | -294.13 | ± 0.19 | kJ/mol |
|
3D Image of C6H5C(O)OH (g) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of C6H5C(O)OH (g)The 20 contributors listed below account only for 87.6% of the provenance of ΔfH° of C6H5C(O)OH (g). A total of 22 contributors would be needed to account for 90% of the provenance.
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 22.9 | 9038.5 | C6H5C(O)OH (cr,l) → C6H5C(O)OH (g)  | ΔrH°(353.15 K) = 89.45 ± 0.10 kJ/mol | de Kruif 1982, Kiyobayashi 2001, note unc2 | 8.7 | 2214.7 | C (graphite) + O2 (g) → CO2 (g)  | ΔrH°(298.15 K) = -393.464 ± 0.024 kJ/mol | Hawtin 1966, note CO2e | 6.4 | 9037.9 | C6H5C(O)OH (cr,l) + 15/2 O2 (g) → 7 CO2 (g) + 3 H2O (cr,l)  | ΔrH°(298.15 K) = -3227.21 ± 0.27 kJ/mol | Challoner 1955 | 6.4 | 9037.1 | C6H5C(O)OH (cr,l) + 15/2 O2 (g) → 7 CO2 (g) + 3 H2O (cr,l)  | ΔrH°(298.15 K) = -3226.86 ± 0.27 kJ/mol | Prosen 1944 | 5.2 | 9037.10 | C6H5C(O)OH (cr,l) + 15/2 O2 (g) → 7 CO2 (g) + 3 H2O (cr,l)  | ΔrH°(298.15 K) = -3227.26 ± 0.30 kJ/mol | Coops 1956 | 4.5 | 9037.4 | C6H5C(O)OH (cr,l) + 15/2 O2 (g) → 7 CO2 (g) + 3 H2O (cr,l)  | ΔrH°(298.15 K) = -3226.89 ± 0.32 kJ/mol | Jessup 1946, Jessup 1942, Jessup 1934 | 3.5 | 2214.4 | C (graphite) + O2 (g) → CO2 (g)  | ΔrH°(298.15 K) = -393.462 ± 0.038 kJ/mol | Lewis 1965, note CO2d | 3.5 | 2214.5 | C (graphite) + O2 (g) → CO2 (g)  | ΔrH°(298.15 K) = -393.468 ± 0.038 kJ/mol | Fraser 1952, note CO2f | 2.9 | 9037.7 | C6H5C(O)OH (cr,l) + 15/2 O2 (g) → 7 CO2 (g) + 3 H2O (cr,l)  | ΔrH°(298.15 K) = -3226.91 ± 0.40 kJ/mol | Churney 1968 | 2.8 | 125.2 | 1/2 O2 (g) + H2 (g) → H2O (cr,l)  | ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/mol | Rossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930 | 2.6 | 9037.8 | C6H5C(O)OH (cr,l) + 15/2 O2 (g) → 7 CO2 (g) + 3 H2O (cr,l)  | ΔrH°(298.15 K) = -3227.42 ± 0.33 (×1.269) kJ/mol | Gundry 1958 | 2.6 | 2359.1 | 2 H2 (g) + C (graphite) → CH4 (g)  | ΔrG°(1165 K) = 37.521 ± 0.068 kJ/mol | Smith 1946, note COf, 3rd Law | 2.4 | 9037.3 | C6H5C(O)OH (cr,l) + 15/2 O2 (g) → 7 CO2 (g) + 3 H2O (cr,l)  | ΔrH°(298.15 K) = -3226.90 ± 0.44 kJ/mol | Pilcher 1984 | 2.3 | 2214.11 | C (graphite) + O2 (g) → CO2 (g)  | ΔrH°(298.15 K) = -94.051 ± 0.011 kcal/mol | Prosen 1944a, Cox 1970, NBS TN270, NBS Tables 1989 | 1.9 | 9037.2 | C6H5C(O)OH (cr,l) + 15/2 O2 (g) → 7 CO2 (g) + 3 H2O (cr,l)  | ΔrH°(298.15 K) = -3226.84 ± 0.49 kJ/mol | Li 1990 | 1.8 | 9037.6 | C6H5C(O)OH (cr,l) + 15/2 O2 (g) → 7 CO2 (g) + 3 H2O (cr,l)  | ΔrH°(298.15 K) = -3226.90 ± 0.50 kJ/mol | Gundry 1969, note unc, est unc | 1.8 | 9037.5 | C6H5C(O)OH (cr,l) + 15/2 O2 (g) → 7 CO2 (g) + 3 H2O (cr,l)  | ΔrH°(298.15 K) = -3226.66 ± 0.50 kJ/mol | Mosselman 1969, note unc, est unc | 1.6 | 2214.6 | C (graphite) + O2 (g) → CO2 (g)  | ΔrH°(298.15 K) = -393.462 ± 0.056 kJ/mol | Hawtin 1966, note CO2e | 1.5 | 2357.7 | CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (cr,l)  | ΔrH°(298.15 K) = -890.578 ± 0.078 kJ/mol | Schley 2010 | 1.4 | 9038.4 | C6H5C(O)OH (cr,l) → C6H5C(O)OH (g)  | ΔrH°(298.15 K) = 90.6 ± 0.4 kJ/mol | Colomina 1982, note unc |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of C6H5C(O)OH (g) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 86.1 | Benzoic acid | C6H5C(O)OH (cr,l) | | -367.33 | -384.74 | ± 0.17 | kJ/mol | 122.1213 ± 0.0056 | 65-85-0*500 | 51.0 | Carbonic acid | C(O)(OH)2 (aq, undissoc) | | | -698.670 | ± 0.028 | kJ/mol | 62.0248 ± 0.0012 | 463-79-6*1000 | 50.7 | Benzoyl chloride | C6H5C(O)Cl (cr,l) | | | -157.10 | ± 0.26 | kJ/mol | 140.5667 ± 0.0057 | 98-88-4*500 | 50.3 | Carbon dioxide | CO2 (g) | | -393.111 | -393.477 | ± 0.015 | kJ/mol | 44.00950 ± 0.00100 | 124-38-9*0 | 49.7 | Carbon dioxide cation | [CO2]+ (g) | | 936.090 | 936.924 | ± 0.017 | kJ/mol | 44.00895 ± 0.00100 | 12181-61-2*0 | 42.3 | Succinic acid | (CH2C(O)OH)2 (cr,l) | | -918.49 | -940.22 | ± 0.12 | kJ/mol | 118.0880 ± 0.0034 | 110-15-6*500 | 40.2 | Carbon dioxide | CO2 (aq, undissoc) | | | -412.868 | ± 0.018 | kJ/mol | 44.00950 ± 0.00100 | 124-38-9*1000 | 36.3 | Hydrogen carbonate | [HOC(O)O]- (aq) | | | -689.865 | ± 0.039 | kJ/mol | 61.0174 ± 0.0012 | 71-52-3*800 | 31.2 | Benzene | C6H6 (cr,l) | | 50.81 | 49.26 | ± 0.21 | kJ/mol | 78.1118 ± 0.0048 | 71-43-2*500 | 31.2 | Benzene | C6H6 (g) | | 100.71 | 83.20 | ± 0.21 | kJ/mol | 78.1118 ± 0.0048 | 71-43-2*0 |
|
Most Influential reactions involving C6H5C(O)OH (g)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.897 | 9038.5 | C6H5C(O)OH (cr,l) → C6H5C(O)OH (g)  | ΔrH°(353.15 K) = 89.45 ± 0.10 kJ/mol | de Kruif 1982, Kiyobayashi 2001, note unc2 | 0.056 | 9038.4 | C6H5C(O)OH (cr,l) → C6H5C(O)OH (g)  | ΔrH°(298.15 K) = 90.6 ± 0.4 kJ/mol | Colomina 1982, note unc | 0.017 | 9036.5 | C6H5C(O)OH (g) + CH3CH3 (g) → C6H5CH3 (g) + CH3C(O)OH (g)  | ΔrH°(0 K) = -0.15 ± 0.85 kcal/mol | Ruscic W1RO | 0.015 | 9036.2 | C6H5C(O)OH (g) + CH3CH3 (g) → C6H5CH3 (g) + CH3C(O)OH (g)  | ΔrH°(0 K) = -0.12 ± 0.90 kcal/mol | Ruscic G4 | 0.014 | 9036.1 | C6H5C(O)OH (g) + CH3CH3 (g) → C6H5CH3 (g) + CH3C(O)OH (g)  | ΔrH°(0 K) = 0.32 ± 0.90 (×1.022) kcal/mol | Ruscic G3X | 0.012 | 9036.3 | C6H5C(O)OH (g) + CH3CH3 (g) → C6H5CH3 (g) + CH3C(O)OH (g)  | ΔrH°(0 K) = 0.38 ± 1.00 kcal/mol | Ruscic CBS-n | 0.010 | 9036.4 | C6H5C(O)OH (g) + CH3CH3 (g) → C6H5CH3 (g) + CH3C(O)OH (g)  | ΔrH°(0 K) = 0.48 ± 0.90 (×1.189) kcal/mol | Ruscic CBS-n | 0.009 | 9038.2 | C6H5C(O)OH (cr,l) → C6H5C(O)OH (g)  | ΔrH°(307.1 K) = 90.0 ± 1.0 kJ/mol | Ribeiro da Silva 2006, note unc | 0.009 | 9038.3 | C6H5C(O)OH (cr,l) → C6H5C(O)OH (g)  | ΔrH°(298.15 K) = 91.4 ± 1.0 kJ/mol | Monte 2006, note unc | 0.007 | 9039.8 | C6H5C(O)OH (cr,l) → C6H5C(O)OH (g)  | ΔrH°(298.15 K) = 21.39 ± 0.08 (×3.364) kcal/mol | Morawetz 1972, note unc | 0.004 | 9038.7 | C6H5C(O)OH (cr,l) → C6H5C(O)OH (g)  | ΔrH°(298.15 K) = 89.25 ± 0.85 (×1.61) kJ/mol | Da Silva 1990 | 0.002 | 9038.8 | C6H5C(O)OH (cr,l) → C6H5C(O)OH (g)  | ΔrH°(298.15 K) = 90.9 ± 2.0 kJ/mol | Selvakumar 2009 | 0.001 | 9039.5 | C6H5C(O)OH (cr,l) → C6H5C(O)OH (g)  | ΔrH°(365.5 K) = 21.85 ± 0.10 (×5.536) kcal/mol | Davies 1954, Malaspina 1973, 2nd Law | 0.001 | 9038.6 | C6H5C(O)OH (cr,l) → C6H5C(O)OH (g)  | ΔrH°(298.15 K) = 88.3 ± 1.0 (×2.327) kJ/mol | note unc2 | 0.001 | 9038.9 | C6H5C(O)OH (cr,l) → C6H5C(O)OH (g)  | ΔrH°(335 K) = 87.45 ± 0.68 (×3.513) kJ/mol | Torres-Gomez 1988, note unc | 0.001 | 9039.9 | C6H5C(O)OH (cr,l) → C6H5C(O)OH (g)  | ΔrH°(298.15 K) = 21.05 ± 0.10 (×6.169) kcal/mol | de Kruif 1973, note unc | 0.001 | 9038.1 | C6H5C(O)OH (cr,l) → C6H5C(O)OH (g)  | ΔrH°(298.15 K) = 93.3 ± 1.2 (×2.278) kJ/mol | Freedman 2008 | 0.001 | 9039.7 | C6H5C(O)OH (cr,l) → C6H5C(O)OH (g)  | ΔrH°(383 K) = 20.5 ± 0.5 (×1.384) kcal/mol | Hirsbrunner 1934, Malaspina 1973, 2nd Law, est unc | 0.000 | 9039.2 | C6H5C(O)OH (cr,l) → C6H5C(O)OH (g)  | ΔrH°(360.8 K) = 20.597 ± 0.079 (×9.31) kcal/mol | Malaspina 1973, 2nd Law | 0.000 | 9039.1 | C6H5C(O)OH (cr,l) → C6H5C(O)OH (g)  | ΔrH°(360.8 K) = 20.557 ± 0.100 (×7.829) kcal/mol | Malaspina 1973, 2nd Law |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.156 of the Thermochemical Network (2024); available at ATcT.anl.gov |
4
|
|
N. A. Seifert, B. Ruscic, R. Sivaramakrishnan, and K. Prozument,
The C2H4O Isomers in the Oxidation of Ethylene
J. Mol. Spectrosc. 398, 111847/1-8 (2023)
[DOI: 10.1016/j.jms.2023.111847]
|
5
|
|
U. Jacovella, B. Ruscic, N. L. Chen, H.-L. Le, S. Boyé-Péronne, S. Hartweg, M. Roy-Chowdhury, G. A. Garcia, J.-C. Loison, and B. Gans,
Refining Thermochemical Properties of CF, SiF, and Their Cations by Combining Photoelectron Spectroscopy, Quantum Chemical Calculations, and the Active Thermochemical Tables Approach
Phys. Chem. Chem. Phys. 25, 30838-30847 (2023)
[DOI: 10.1039/D3CP04244H]
|
6
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
7
|
|
B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019)
[DOI: 10.1016/B978-0-444-64087-1.00001-2]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6] and Ruscic and Bross[7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|