Selected ATcT [1, 2] enthalpy of formation based on version 1.156 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.148 to include species relevant to a recent study of the oxidation of ethylene [4] as well as new measurements that led to refining the thermochemistry of CF and SiF and their cations [5].

Succinic acid

Formula: (CH2C(O)OH)2 (cr,l)
CAS RN: 110-15-6
ATcT ID: 110-15-6*500
SMILES: OC(=O)CCC(=O)O
InChI: InChI=1S/C4H6O4/c5-3(6)1-2-4(7)8/h1-2H2,(H,5,6)(H,7,8)
InChIKey: KDYFGRWQOYBRFD-UHFFFAOYSA-N
Hills Formula: C4H6O4

2D Image:

OC(=O)CCC(=O)O
Aliases: (CH2C(O)OH)2; Succinic acid; 1,4-Butanedioic acid; Butanedioic acid; 1,2-Ethanedicarboxylic acid; Ethanedicarboxylic acid; Ethylene succinic acid; Dihydrofumaric acid; Dicarboxylic acid; Amber acid; Acid of amber; Salt of amber; Wormwood acid; Wormwood; Asuccin; Succinellite; Sal succini; Bernsteinsaure; Katasuccin; (CH2COOH)2
Relative Molecular Mass: 118.0880 ± 0.0034

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
-918.49-940.22± 0.12kJ/mol

Top contributors to the provenance of ΔfH° of (CH2C(O)OH)2 (cr,l)

The 20 contributors listed below account only for 73.3% of the provenance of ΔfH° of (CH2C(O)OH)2 (cr,l).
A total of 55 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
8.77451.3 (CH2C(O)OH)2 (cr,l) + 7/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -356.401 ± 0.045 kcal/molVanderzee 1972b
8.3125.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
6.82214.7 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.464 ± 0.024 kJ/molHawtin 1966, note CO2e
4.82359.1 H2 (g) C (graphite) → CH4 (g) ΔrG°(1165 K) = 37.521 ± 0.068 kJ/molSmith 1946, note COf, 3rd Law
4.57451.9 (CH2C(O)OH)2 (cr,l) + 7/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -356.392 ± 0.062 kcal/molGood 1968, Vanderzee 1972b
4.57451.1 (CH2C(O)OH)2 (cr,l) + 7/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -356.436 ± 0.062 kcal/molZaikin 1970, Vanderzee 1972b
4.37451.2 (CH2C(O)OH)2 (cr,l) + 7/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -356.431 ± 0.064 kcal/molVanderzee 1972b
4.17450.9 (CH2C(O)OH)2 (cr,l) + 7/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -356.397 ± 0.065 kcal/molPilcher 1955, Vanderzee 1972b
3.42357.7 CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -890.578 ± 0.078 kJ/molSchley 2010
3.17451.11 (CH2C(O)OH)2 (cr,l) + 7/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -356.306 ± 0.062 (×1.215) kcal/molWong 1971, Vanderzee 1972b
3.17450.11 (CH2C(O)OH)2 (cr,l) + 7/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -356.306 ± 0.062 (×1.215) kcal/molGood 1959, as quoted by Cox 1970
2.72214.5 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.468 ± 0.038 kJ/molFraser 1952, note CO2f
2.72214.4 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.462 ± 0.038 kJ/molLewis 1965, note CO2d
2.67450.6 (CH2C(O)OH)2 (cr,l) + 7/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -356.385 ± 0.082 kcal/molHuffman 1938, Vanderzee 1972b
1.82214.11 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -94.051 ± 0.011 kcal/molProsen 1944a, Cox 1970, NBS TN270, NBS Tables 1989
1.67451.10 (CH2C(O)OH)2 (cr,l) + 7/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -356.353 ± 0.102 kcal/molDucros 1969, Ducros 1970, Vanderzee 1972b
1.67450.5 (CH2C(O)OH)2 (cr,l) + 7/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -356.373 ± 0.102 kcal/molRoth 1937a, Vanderzee 1972b
1.22214.6 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.462 ± 0.056 kJ/molHawtin 1966, note CO2e
1.27450.3 (CH2C(O)OH)2 (cr,l) + 7/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -356.42 ± 0.12 kcal/molBeckers 1931, Vanderzee 1972b
1.27450.4 (CH2C(O)OH)2 (cr,l) + 7/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -356.34 ± 0.12 kcal/molKeffler 1934, Vanderzee 1972b

Top 10 species with enthalpies of formation correlated to the ΔfH° of (CH2C(O)OH)2 (cr,l)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
65.6 Carbonic acidC(O)(OH)2 (aq, undissoc)OC(=O)O-698.670± 0.028kJ/mol62.0248 ±
0.0012
463-79-6*1000
52.9 WaterH2O (cr, l, eq.press.)O-286.276-285.804± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*499
52.9 WaterH2O (l, eq.press.)O-285.804± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*589
52.9 Oxonium[H3O]+ (aq)[OH3+]-285.802± 0.022kJ/mol19.02267 ±
0.00037
13968-08-6*800
52.9 WaterH2O (l)O-285.802± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*590
52.9 WaterH2O (cr,l)O-286.274-285.802± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*500
52.9 WaterH2O (g)O-238.904-241.807± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*0
52.9 WaterH2O (g, para)O-238.904-241.807± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*2
52.9 WaterH2O (g, ortho)O-238.620-241.807± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*1
52.9 WaterH2O (cr)O-286.274-292.715± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*510

Most Influential reactions involving (CH2C(O)OH)2 (cr,l)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.1817451.3 (CH2C(O)OH)2 (cr,l) + 7/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -356.401 ± 0.045 kcal/molVanderzee 1972b
0.0957451.1 (CH2C(O)OH)2 (cr,l) + 7/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -356.436 ± 0.062 kcal/molZaikin 1970, Vanderzee 1972b
0.0957451.9 (CH2C(O)OH)2 (cr,l) + 7/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -356.392 ± 0.062 kcal/molGood 1968, Vanderzee 1972b
0.0897451.2 (CH2C(O)OH)2 (cr,l) + 7/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -356.431 ± 0.064 kcal/molVanderzee 1972b
0.0867450.9 (CH2C(O)OH)2 (cr,l) + 7/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -356.397 ± 0.065 kcal/molPilcher 1955, Vanderzee 1972b
0.0647451.11 (CH2C(O)OH)2 (cr,l) + 7/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -356.306 ± 0.062 (×1.215) kcal/molWong 1971, Vanderzee 1972b
0.0647450.11 (CH2C(O)OH)2 (cr,l) + 7/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -356.306 ± 0.062 (×1.215) kcal/molGood 1959, as quoted by Cox 1970
0.0547450.6 (CH2C(O)OH)2 (cr,l) + 7/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -356.385 ± 0.082 kcal/molHuffman 1938, Vanderzee 1972b
0.0357450.5 (CH2C(O)OH)2 (cr,l) + 7/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -356.373 ± 0.102 kcal/molRoth 1937a, Vanderzee 1972b
0.0357451.10 (CH2C(O)OH)2 (cr,l) + 7/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -356.353 ± 0.102 kcal/molDucros 1969, Ducros 1970, Vanderzee 1972b
0.0257450.4 (CH2C(O)OH)2 (cr,l) + 7/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -356.34 ± 0.12 kcal/molKeffler 1934, Vanderzee 1972b
0.0257450.3 (CH2C(O)OH)2 (cr,l) + 7/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -356.42 ± 0.12 kcal/molBeckers 1931, Vanderzee 1972b
0.0257450.12 (CH2C(O)OH)2 (cr,l) + 7/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -356.34 ± 0.12 kcal/molBills 1964, Vanderzee 1972b
0.0257450.13 (CH2C(O)OH)2 (cr,l) + 7/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -356.28 ± 0.12 kcal/molWilhoit 1964, Vanderzee 1972b
0.0257450.8 (CH2C(O)OH)2 (cr,l) + 7/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -356.33 ± 0.12 kcal/molCass 1955, Vanderzee 1972b
0.0187450.10 (CH2C(O)OH)2 (cr,l) + 7/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -356.32 ± 0.14 kcal/molKeith 1958, as quoted by Cox 1970
0.0187450.2 (CH2C(O)OH)2 (cr,l) + 7/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -356.41 ± 0.14 kcal/molVerkade 1926, Verkade 1924, Vanderzee 1972b
0.0187451.8 (CH2C(O)OH)2 (cr,l) + 7/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -356.38 ± 0.14 kcal/molAdams 1969, Vanderzee 1972b
0.0077450.1 (CH2C(O)OH)2 (cr,l) + 7/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -1490.2 ± 0.7 (×1.297) kJ/molRibeiro da Silva 2007
0.0037451.7 (CH2C(O)OH)2 (cr,l) + 7/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -356.72 ± 0.1 (×3.437) kcal/molVasilev 1991, as quoted by NIST WebBook


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.156 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   N. A. Seifert, B. Ruscic, R. Sivaramakrishnan, and K. Prozument,
The C2H4O Isomers in the Oxidation of Ethylene
J. Mol. Spectrosc. 398, 111847/1-8 (2023) [DOI: 10.1016/j.jms.2023.111847]
5   U. Jacovella, B. Ruscic, N. L. Chen, H.-L. Le, S. Boyé-Péronne, S. Hartweg, M. Roy-Chowdhury, G. A. Garcia, J.-C. Loison, and B. Gans,
Refining Thermochemical Properties of CF, SiF, and Their Cations by Combining Photoelectron Spectroscopy, Quantum Chemical Calculations, and the Active Thermochemical Tables Approach
Phys. Chem. Chem. Phys. 25, 30838-30847 (2023) [DOI: 10.1039/D3CP04244H]
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
7   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6] and Ruscic and Bross[7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.