Selected ATcT [1, 2] enthalpy of formation based on version 1.156 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.148 to include species relevant to a recent study of the oxidation of ethylene [4] as well as new measurements that led to refining the thermochemistry of CF and SiF and their cations [5].

Benzene

Formula: C6H6 (g)
CAS RN: 71-43-2
ATcT ID: 71-43-2*0
SMILES: c1ccccc1
InChI: InChI=1S/C6H6/c1-2-4-6-5-3-1/h1-6H
InChIKey: UHOVQNZJYSORNB-UHFFFAOYSA-N
Hills Formula: C6H6

2D Image:

c1ccccc1
Aliases: Benzene; 1,3,5-Cyclohexatriene; Cyclohexatriene; [6]Annulene; Phenyl hydride; Benzolene; Benzole; Benzol; Benzine; Coal naphtha; NSC 67315; Phene; Pyrobenzol; Pyrobenzole; C6H6; (CHCHCHCHCHCH); CH(CHCHCHCHCH)
Relative Molecular Mass: 78.1118 ± 0.0048

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
100.7183.20± 0.21kJ/mol

3D Image of C6H6 (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of C6H6 (g)

The 20 contributors listed below account only for 75.0% of the provenance of ΔfH° of C6H6 (g).
A total of 147 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
16.06783.3 C6H6 (cr,l) + 15/2 O2 (g) → 6 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -780.97 ± 0.09 kcal/molCoops 1947, Coops 1946
13.06783.1 C6H6 (cr,l) + 15/2 O2 (g) → 6 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -780.98 ± 0.10 kcal/molProsen 1945a, as quoted by Cox 1970
13.06783.4 C6H6 (cr,l) + 15/2 O2 (g) → 6 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -780.92 ± 0.10 kcal/molGood 1969
9.06783.2 C6H6 (cr,l) + 15/2 O2 (g) → 6 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -780.96 ± 0.12 kcal/molCox 1970
5.02214.7 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.464 ± 0.024 kJ/molHawtin 1966, note CO2e
2.8125.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
2.52359.1 H2 (g) C (graphite) → CH4 (g) ΔrG°(1165 K) = 37.521 ± 0.068 kJ/molSmith 1946, note COf, 3rd Law
2.02214.4 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.462 ± 0.038 kJ/molLewis 1965, note CO2d
2.02214.5 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.468 ± 0.038 kJ/molFraser 1952, note CO2f
1.93984.1 C6H6 (g) + 3 H2 (g) → CH2(CH2CH2CH2CH2CH2) (g) ΔrH°(355. K) = -49.84 ± 0.15 (×1.414) kcal/molKistiakowsky 1936
1.32214.11 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -94.051 ± 0.011 kcal/molProsen 1944a, Cox 1970, NBS TN270, NBS Tables 1989
1.02357.7 CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -890.578 ± 0.078 kJ/molSchley 2010
0.92214.6 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.462 ± 0.056 kJ/molHawtin 1966, note CO2e
0.78984.6 C6H4(C2H2(CC(C4H4))) (g) + 2 CH2CH2 (g) → 3 C6H6 (g) ΔrH°(0 K) = -54.9 ± 4.6 kJ/molKarton 2021
0.72214.2 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.498 ± 0.062 kJ/molDewey 1938, note CO2, Rossini 1938, note CO2c
0.72214.3 C (graphite) O2 (g) → CO2 (g) ΔrH°(303.15 K) = -393.447 ± 0.064 kJ/molJessup 1938, note CO2a, Rossini 1938, note CO2c
0.56771.8 C6H6 (g) → 6 C (g) + 6 H (g) ΔrH°(0 K) = 5463.0 ± 1.8 kJ/molHarding 2011
0.48984.7 C6H4(C2H2(CC(C4H4))) (g) + 2 CH2CH2 (g) → 3 C6H6 (g) ΔrH°(0 K) = -56.78 ± 6 kJ/molDorofeeva 2022, est unc
0.42214.1 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.560 ± 0.055 (×1.509) kJ/molProsen 1944, note CO2b
0.47011.1 C6H4(CHCHCH2) (cr,l) + 11 O2 (g) → 9 CO2 (g) + 4 H2O (cr,l) ΔrH°(298.15 K) = -1146.12 ± 0.30 kcal/molStull 1961

Top 10 species with enthalpies of formation correlated to the ΔfH° of C6H6 (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
100.0 Benzene cation[C6H6]+ (g)c1ccc(cc1)[H+]992.61976.14± 0.21kJ/mol78.1113 ±
0.0048
34504-50-2*0
99.8 BenzeneC6H6 (cr,l)c1ccccc150.8149.26± 0.21kJ/mol78.1118 ±
0.0048
71-43-2*500
52.8 Phenide[C6H5]- (g)c1cccc[c-]1244.29230.86± 0.38kJ/mol77.1044 ±
0.0048
30922-78-2*0
46.1 FluorobenzeneC6H5F (g)c1ccc(cc1)F-96.02-111.70± 0.39kJ/mol96.1023 ±
0.0048
462-06-6*0
46.0 Fluorobenzene cation[C6H5F]+ (g)c1ccc(cc1)[F+]791.96776.93± 0.39kJ/mol96.1018 ±
0.0048
34468-25-2*0
45.9 FluorobenzeneC6H5F (cr,l)c1ccc(cc1)F-148.74-146.32± 0.39kJ/mol96.1023 ±
0.0048
462-06-6*500
44.5 Carbonic acidC(O)(OH)2 (aq, undissoc)OC(=O)O-698.670± 0.028kJ/mol62.0248 ±
0.0012
463-79-6*1000
38.3 Carbon dioxideCO2 (g)C(=O)=O-393.111-393.477± 0.015kJ/mol44.00950 ±
0.00100
124-38-9*0
37.9 Carbon dioxide cation[CO2]+ (g)[C+](=O)=O936.090936.924± 0.017kJ/mol44.00895 ±
0.00100
12181-61-2*0
36.2 Succinic acid(CH2C(O)OH)2 (cr,l)OC(=O)CCC(=O)O-918.49-940.22± 0.12kJ/mol118.0880 ±
0.0034
110-15-6*500

Most Influential reactions involving C6H6 (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.9726772.1 C6H6 (g) → [C6H6]+ (g) ΔrH°(0 K) = 74556.575 ± 0.050 cm-1Neuhauser 1997
0.7126807.1 C6H6 (g) [NH2]- (g) → [C6H5]- (g) NH3 (g) ΔrG°(300 K) = -3.557 ± 0.047 kcal/molDavico 1995
0.5566781.3 C6H6 (cr,l) → C6H6 (g) ΔrH°(298.15 K) = 33.935 ± 0.015 kJ/molTodd 1978
0.2457143.2 C6F6 (g) + 5 C6H6 (g) → 6 C6H5F (g) ΔrH°(0 K) = -32.98 ± 0.90 kcal/molRuscic G4
0.2457143.4 C6F6 (g) + 5 C6H6 (g) → 6 C6H5F (g) ΔrH°(0 K) = -32.05 ± 0.90 kcal/molRuscic CBS-n
0.2457143.1 C6F6 (g) + 5 C6H6 (g) → 6 C6H5F (g) ΔrH°(0 K) = -32.57 ± 0.90 kcal/molRuscic G3X
0.2447130.1 [C6H5F]- (g) C6H6 (g) → C6H5F (g) [C6H6]- (g) ΔrH°(0 K) = 0.31 ± 0.03 eVFrazier 1978, est unc
0.1987143.3 C6F6 (g) + 5 C6H6 (g) → 6 C6H5F (g) ΔrH°(0 K) = -32.44 ± 1.0 kcal/molRuscic CBS-n
0.1986781.11 C6H6 (cr,l) → C6H6 (g) ΔrH°(314.74 K) = 7.905 ± 0.006 kcal/molScott 1947
0.1676778.1 [C6H6]- (g) → C6H6 (g) ΔrH°(0 K) = -1.12 ± 0.03 eVBurrow 1987
0.1676778.5 [C6H6]- (g) → C6H6 (g) ΔrH°(0 K) = -1.15 ± 0.03 eVJordan 1976, Jordan 1976a, Jordan 1978
0.1627197.5 C6H5Cl (g) [C6H5]- (g) → [C6H4Cl]- (g) C6H6 (g) ΔrH°(0 K) = -9.09 ± 0.8 kcal/molRuscic W1RO
0.1627199.5 C6H5Cl (g) [C6H5]- (g) → [C6H4Cl]- (g) C6H6 (g) ΔrH°(0 K) = -12.76 ± 0.8 kcal/molRuscic W1RO
0.1618267.7 CH2C(CHCHCHCH) (g) → C6H6 (g) ΔrH°(0 K) = -31.16 ± 0.60 kcal/molKarton 2009a
0.1587195.5 C6H5Cl (g) [C6H5]- (g) → [C6H4Cl]- (g) C6H6 (g) ΔrH°(0 K) = -7.31 ± 0.8 kcal/molRuscic W1RO
0.1546807.3 C6H6 (g) [NH2]- (g) → [C6H5]- (g) NH3 (g) ΔrG°(300 K) = -3.618 ± 0.101 kcal/molDavico 1995
0.1377130.2 [C6H5F]- (g) C6H6 (g) → C6H5F (g) [C6H6]- (g) ΔrH°(0 K) = 0.26 ± 0.04 eVJordan 1976, est unc
0.1337191.4 C6H4Cl (g) C6H6 (g) → C6H5Cl (g) C6H5 (g) ΔrH°(0 K) = -0.27 ± 0.9 kcal/molRuscic W1RO
0.1337192.4 C6H4Cl (g) C6H6 (g) → C6H5Cl (g) C6H5 (g) ΔrH°(0 K) = -0.85 ± 0.9 kcal/molRuscic W1RO
0.1327193.4 C6H4Cl (g) C6H6 (g) → C6H5Cl (g) C6H5 (g) ΔrH°(0 K) = -1.86 ± 0.9 kcal/molRuscic W1RO


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.156 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   N. A. Seifert, B. Ruscic, R. Sivaramakrishnan, and K. Prozument,
The C2H4O Isomers in the Oxidation of Ethylene
J. Mol. Spectrosc. 398, 111847/1-8 (2023) [DOI: 10.1016/j.jms.2023.111847]
5   U. Jacovella, B. Ruscic, N. L. Chen, H.-L. Le, S. Boyé-Péronne, S. Hartweg, M. Roy-Chowdhury, G. A. Garcia, J.-C. Loison, and B. Gans,
Refining Thermochemical Properties of CF, SiF, and Their Cations by Combining Photoelectron Spectroscopy, Quantum Chemical Calculations, and the Active Thermochemical Tables Approach
Phys. Chem. Chem. Phys. 25, 30838-30847 (2023) [DOI: 10.1039/D3CP04244H]
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
7   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6] and Ruscic and Bross[7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.