Selected ATcT [1, 2] enthalpy of formation based on version 1.156 of the Thermochemical Network [3]This version of ATcT results[3] was generated by additional expansion of version 1.148 to include species relevant to a recent study of the oxidation of ethylene [4] as well as new measurements that led to refining the thermochemistry of CF and SiF and their cations [5].
|
Ethane |
Formula: CH3CH3 (g) |
CAS RN: 74-84-0 |
ATcT ID: 74-84-0*0 |
SMILES: CC |
InChI: InChI=1S/C2H6/c1-2/h1-2H3 |
InChIKey: OTMSDBZUPAUEDD-UHFFFAOYSA-N |
Hills Formula: C2H6 |
2D Image: |
|
Aliases: CH3CH3; Ethane; Dimethyl; Bimethyl; Ethyl hydride; Methylmethane; C2H6 g; CH3CH3 g; CH3-CH3; UN 1035; UN 1961 |
Relative Molecular Mass: 30.0690 ± 0.0017 |
ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units |
---|
-68.38 | -84.01 | ± 0.12 | kJ/mol |
|
3D Image of CH3CH3 (g) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of CH3CH3 (g)The 20 contributors listed below account only for 45.2% of the provenance of ΔfH° of CH3CH3 (g). A total of 946 contributors would be needed to account for 90% of the provenance.
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 6.4 | 2452.1 | CH3CH3 (g) + 7/2 O2 (g) → 2 CO2 (g) + 3 H2O (cr,l)  | ΔrH°(298.15 K) = -1560.68 ± 0.25 (×1.325) kJ/mol | Pittam 1972 | 6.1 | 2359.1 | 2 H2 (g) + C (graphite) → CH4 (g)  | ΔrG°(1165 K) = 37.521 ± 0.068 kJ/mol | Smith 1946, note COf, 3rd Law | 5.2 | 2513.1 | CH2CH2 (g) + H2 (g) → CH3CH3 (g)  | ΔrH°(355.15 K) = -32.831 ± 0.05 kcal/mol | Kistiakowsky 1935 | 3.5 | 125.2 | 1/2 O2 (g) + H2 (g) → H2O (cr,l)  | ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/mol | Rossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930 | 3.1 | 8985.2 | C6H4(C2H2(CC(C4H4))) (g) + 18 CH4 (g) → 9 CH3CH3 (g) + 7 CH2CH2 (g)  | ΔrH°(0 K) = 776.95 ± 6 kJ/mol | Dorofeeva 2022, est unc | 2.5 | 2513.2 | CH2CH2 (g) + H2 (g) → CH3CH3 (g)  | ΔrG°(723.15 K) = -10.867 ± 0.072 kcal/mol | Kistiakowsky 1951 | 2.4 | 2452.2 | CH3CH3 (g) + 7/2 O2 (g) → 2 CO2 (g) + 3 H2O (cr,l)  | ΔrH°(298.15 K) = -372.805 ± 0.110 (×1.164) kcal/mol | Prosen 1945, Rossini 1934 | 2.1 | 2512.1 | CH2CH2 (g) + 3 O2 (g) → 2 CO2 (g) + 2 H2O (cr,l)  | ΔrH°(298.15 K) = -1411.18 ± 0.30 kJ/mol | Rossini 1937 | 1.7 | 3212.12 | CH3CH2CH3 (g) + CH4 (g) → 2 CH3CH3 (g)  | ΔrH°(0 K) = 2.96 ± 0.20 kcal/mol | Karton 2011, Karton 2009b | 1.6 | 8070.6 | CH(CH(CHCH)) (g) + 8 CH4 (g) → 6 CH3CH3 (g)  | ΔrH°(0 K) = -428.9 ± 3.0 (×1.067) kJ/mol | Klopper 2010a, Klopper 2009, est unc | 1.4 | 8948.2 | C6H4(C4H4) (g) + 12 CH4 (g) → 6 CH3CH3 (g) + 5 CH2CH2 (g)  | ΔrH°(0 K) = 516.00 ± 6 kJ/mol | Dorofeeva 2022, est unc | 1.3 | 3210.1 | CH3CH2CH3 (g) + 5 O2 (g) → 3 CO2 (g) + 4 H2O (cr,l)  | ΔrH°(298.15 K) = -2219.15 ± 0.46 (×1.091) kJ/mol | Pittam 1972 | 1.2 | 2214.7 | C (graphite) + O2 (g) → CO2 (g)  | ΔrH°(298.15 K) = -393.464 ± 0.024 kJ/mol | Hawtin 1966, note CO2e | 1.2 | 2513.3 | CH2CH2 (g) + H2 (g) → CH3CH3 (g)  | ΔrG°(653.15 K) = -13.114 ± 0.104 kcal/mol | Kistiakowsky 1951 | 0.9 | 2252.11 | CO (g) → C (g) + O (g)  | ΔrH°(0 K) = 1071.92 ± 0.10 (×1.242) kJ/mol | Thorpe 2021 | 0.8 | 3420.11 | CH3CCH (g) + CH4 (g) → HCCH (g) + CH3CH3 (g)  | ΔrH°(0 K) = 33.87 ± 0.8 kJ/mol | Ferguson 2013, est unc | 0.8 | 2594.11 | HCCH (g) + 2 H2 (g) → CH3CH3 (g)  | ΔrH°(0 K) = -71.01 ± 0.20 kcal/mol | Karton 2007 | 0.7 | 3212.10 | CH3CH2CH3 (g) + CH4 (g) → 2 CH3CH3 (g)  | ΔrH°(0 K) = 3.00 ± 0.30 kcal/mol | Karton 2011 | 0.6 | 2262.2 | CO (g) → C+ (g) + O (g)  | ΔrH°(0 K) = 22.3713 ± 0.0015 eV | Ng 2007 | 0.6 | 3257.1 | CH3CHCH2 (g) + 9/2 O2 (g) → 3 CO2 (g) + 3 H2O (cr,l)  | ΔrH°(298.15 K) = -2057.72 ± 0.62 kJ/mol | Rossini 1937 |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of CH3CH3 (g) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 67.6 | Propane | CH3CH2CH3 (g) | | -82.71 | -104.99 | ± 0.15 | kJ/mol | 44.0956 ± 0.0025 | 74-98-6*0 | 61.7 | Ethylene | CH2CH2 (g) | | 60.91 | 52.40 | ± 0.11 | kJ/mol | 28.0532 ± 0.0016 | 74-85-1*0 | 61.7 | Ethylene cation | [CH2CH2]+ (g) | | 1075.22 | 1068.01 | ± 0.11 | kJ/mol | 28.0526 ± 0.0016 | 34470-02-5*0 | 47.5 | n-Butane | CH3CH2CH2CH3 (g) | | -98.23 | -125.54 | ± 0.19 | kJ/mol | 58.1222 ± 0.0033 | 106-97-8*0 | 46.6 | Propene | CH3CHCH2 (g) | | 34.91 | 20.07 | ± 0.18 | kJ/mol | 42.0797 ± 0.0024 | 115-07-1*0 | 46.5 | Propylene cation | [CH3CHCH2]+ (g) | | 975.20 | 961.67 | ± 0.18 | kJ/mol | 42.0792 ± 0.0024 | 34504-10-4*0 | 42.8 | iso-Propylium | [CH3CHCH3]+ (g) | | 822.99 | 805.91 | ± 0.23 | kJ/mol | 43.0871 ± 0.0024 | 19252-53-0*0 | 39.3 | Ethyl | CH3CH2 (g) | | 131.50 | 120.75 | ± 0.20 | kJ/mol | 29.0611 ± 0.0016 | 2025-56-1*0 | 38.8 | Methane | CH4 (g) | | -66.541 | -74.511 | ± 0.044 | kJ/mol | 16.04246 ± 0.00085 | 74-82-8*0 | 38.3 | Carbon | C (g) | | 711.400 | 716.885 | ± 0.040 | kJ/mol | 12.01070 ± 0.00080 | 7440-44-0*0 |
|
Most Influential reactions involving CH3CH3 (g)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.808 | 2447.8 | [CH3CH3]- (g) → CH3CH3 (g)  | ΔrH°(0 K) = -1.143 ± 0.050 eV | Ruscic W1RO | 0.731 | 2445.6 | CH3CH3 (g) → [CH3CH3]+ (g)  | ΔrH°(0 K) = 11.521 ± 0.007 eV | Nicholson 1965 | 0.252 | 8439.7 | SiH3SiH3 (g) + 2 CH4 (g) → CH3CH3 (g) + 2 SiH4 (g)  | ΔrH°(0 K) = 13.99 ± 0.2 kcal/mol | Karton 2011, Karton 2007b | 0.236 | 5227.6 | CH2C(O)OH (g, syn) + CH3CH3 (g) → CH3C(O)OH (g, syn) + CH3CH2 (g)  | ΔrH°(0 K) = 7.41 ± 2.00 kJ/mol | Klippenstein 2017 | 0.236 | 7369.6 | CH2N(O)O (g) + CH3CH3 (g) → CH3N(O)O (g) + CH3CH2 (g)  | ΔrH°(0 K) = -1.76 ± 2.0 kJ/mol | Klippenstein 2017 | 0.232 | 4412.4 | O(CHCH) (g, singlet) + CH3CH3 (g) → O(CH2CH2) (g) + CH2CH2 (g)  | ΔrH°(0 K) = -43.57 ± 0.30 kcal/mol | Karton 2011 | 0.230 | 2468.3 | [C2H7]+ (g) + CO (g) → [HCO]+ (g) + CH3CH3 (g)  | ΔrG°(298.15 K) = 1.43 ± 0.3 kcal/mol | Mackay 1981, 3rd Law, note unc5 | 0.227 | 5485.5 | CH3CH2N (g) + CH3CH3 (g) → CH3N (g) + CH3CH2CH3 (g)  | ΔrH°(0 K) = 0.56 ± 0.85 kcal/mol | Ruscic W1RO | 0.216 | 5212.9 | HC(O)OCH2 (g, syn) + CH3CH3 (g) → HC(O)OCH3 (g, syn) + CH3CH2 (g)  | ΔrH°(0 K) = 4.04 ± 2.00 kJ/mol | Klippenstein 2017 | 0.214 | 6515.6 | 3 CH2FCH2F (g) → CF3CF3 (g) + 2 CH3CH3 (g)  | ΔrH°(0 K) = -166.144 ± 5.0 kJ/mol | Nagy 2014, est unc | 0.209 | 7449.5 | (CH2C(O)OH)2 (g) + 2 CH3 (g) → 2 CH2C(O)OH (g, syn) + CH3CH3 (g)  | ΔrH°(0 K) = -4.89 ± 0.9 kcal/mol | Ruscic W1RO | 0.206 | 2513.1 | CH2CH2 (g) + H2 (g) → CH3CH3 (g)  | ΔrH°(355.15 K) = -32.831 ± 0.05 kcal/mol | Kistiakowsky 1935 | 0.202 | 5485.2 | CH3CH2N (g) + CH3CH3 (g) → CH3N (g) + CH3CH2CH3 (g)  | ΔrH°(0 K) = 0.80 ± 0.90 kcal/mol | Ruscic G4 | 0.202 | 5485.4 | CH3CH2N (g) + CH3CH3 (g) → CH3N (g) + CH3CH2CH3 (g)  | ΔrH°(0 K) = 0.64 ± 0.90 kcal/mol | Ruscic CBS-n | 0.202 | 5485.1 | CH3CH2N (g) + CH3CH3 (g) → CH3N (g) + CH3CH2CH3 (g)  | ΔrH°(0 K) = 0.53 ± 0.90 kcal/mol | Ruscic G3X | 0.198 | 3324.6 | CH3CH2CH (g, triplet gauche) + CH3CH3 (g) → CH3CH (g, triplet) + CH3CH2CH3 (g)  | ΔrH°(0 K) = -2.89 ± 2.0 kJ/mol | Klippenstein 2017 | 0.198 | 3214.2 | [CH3CH2CH3]+ (g) + CH3CH3 (g) → CH3CH2CH3 (g) + [CH3CH3]+ (g)  | ΔrH°(0 K) = 0.580 ± 0.039 eV | Ruscic G3X | 0.189 | 6509.11 | CH3CH2F (g) + CH4 (g) → CH3F (g) + CH3CH3 (g)  | ΔrH°(0 K) = 6.78 ± 0.20 kcal/mol | Karton 2011 | 0.178 | 6519.6 | 3 CH3CHF2 (g) → CF3CF3 (g) + 2 CH3CH3 (g)  | ΔrH°(0 K) = -2.037 ± 3.3 kJ/mol | Nagy 2014, est unc | 0.170 | 7462.2 | CH3CHBr2 (g) + CH3CH3 (g) → 2 CH3CH2Br (g)  | ΔrH°(0 K) = -1.68 ± 1.0 kcal/mol | Ruscic G4 |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.156 of the Thermochemical Network (2024); available at ATcT.anl.gov |
4
|
|
N. A. Seifert, B. Ruscic, R. Sivaramakrishnan, and K. Prozument,
The C2H4O Isomers in the Oxidation of Ethylene
J. Mol. Spectrosc. 398, 111847/1-8 (2023)
[DOI: 10.1016/j.jms.2023.111847]
|
5
|
|
U. Jacovella, B. Ruscic, N. L. Chen, H.-L. Le, S. Boyé-Péronne, S. Hartweg, M. Roy-Chowdhury, G. A. Garcia, J.-C. Loison, and B. Gans,
Refining Thermochemical Properties of CF, SiF, and Their Cations by Combining Photoelectron Spectroscopy, Quantum Chemical Calculations, and the Active Thermochemical Tables Approach
Phys. Chem. Chem. Phys. 25, 30838-30847 (2023)
[DOI: 10.1039/D3CP04244H]
|
6
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
7
|
|
B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019)
[DOI: 10.1016/B978-0-444-64087-1.00001-2]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6] and Ruscic and Bross[7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|