Selected ATcT [1, 2] enthalpy of formation based on version 1.130 of the Thermochemical Network [3]

This version of ATcT results[4] was generated by additional expansion of version 1.128 [5,6] to include with the calculations provided in reference [4].

Ammonium bromide

Formula: (NH4)Br (cr)
CAS RN: 12124-97-9
ATcT ID: 12124-97-9*510
SMILES: [NH4+].[Br-]
InChI: InChI=1S/BrH.H3N/h1H;1H3
InChIKey: SWLVFNYSXGMGBS-UHFFFAOYSA-N
Hills Formula: Br1H4N1

2D Image:

[NH4+].[Br-]
Aliases: (NH4)Br; Ammonium bromide; NH4Br; FR-1; FR-11
Relative Molecular Mass: 97.9425 ± 0.0010

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
-253.60-270.18± 0.16kJ/mol

Top contributors to the provenance of ΔfH° of (NH4)Br (cr)

The 20 contributors listed below account only for 61.4% of the provenance of ΔfH° of (NH4)Br (cr).
A total of 157 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
7.31095.2 Br2 (cr,l) → Br2 (g) ΔrH°(298.15 K) = 7.386 ± 0.027 kcal/molHildenbrand 1958
5.81186.1 Cl2 (g) + 2 Br- (aq) → Br2 (cr,l) + 2 Cl- (aq) ΔrH°(298.15 K) = -91.29 ± 0.40 (×2.538) kJ/molJohnson 1963, as quoted by CODATA Key Vals
5.81186.2 Cl2 (g) + 2 Br- (aq) → Br2 (cr,l) + 2 Cl- (aq) ΔrH°(298.15 K) = -91.29 ± 0.80 (×1.269) kJ/molSunner 1964, as quoted by CODATA Key Vals
4.71125.1 HBr (g) → HBr (aq, 2570 H2O) ΔrH°(298.15 K) = -20.286 ± 0.012 kcal/molVanderzee 1963
4.21196.1 [HBr]+ (g) → H (g) Br+ (g) ΔrH°(0 K) = 31394.5 ± 20 (×1.795) cm-1Haugh 1971, Norling 1935
4.21697.1 NH3 (g) → NH3 (aq, undissoc) ΔrH°(298.15 K) = -8.448 ± 0.015 kcal/molVanderzee 1972
4.11704.5 (NH4)Br (cr) → [NH4]+ (aq) Br- (aq) ΔrG°(298.15 K) = -7.849 ± 0.040 kJ/molCODATA Key Vals
4.05947.1 CH3Br (g) → [CH3]+ (g) Br (g) ΔrH°(0 K) = 12.834 ± 0.002 eVSong 2001
3.71129.1 HBr (aq, 3000 H2O) → HBr (aq) ΔrH°(298.15 K) = -0.239 ± 0.040 kJ/molNBS Tables 1989, Parker 1965, NBS TN270
3.28938.1 S(O)(OH)2 (aq, 2500 H2O) Br2 (cr,l) H2O (cr,l) → OS(O)(OH)2 (aq, 2500 H2O) + 2 HBr (aq, 1250 H2O) ΔrH°(298.15 K) = -55.47 ± 0.11 (×2.768) kcal/molJohnson 1963
2.31122.1 1/2 H2 (g) + 1/2 Br2 (cr,l) → HBr (aq) ΔrG°(298.15 K) = -102.81 ± 0.80 kJ/molJones 1934, as quoted by CODATA Key Vals
1.51636.1 1/2 N2 (g) + 3/2 H2 (g) → NH3 (g) ΔrH°(298.15 K) = -10.885 ± 0.010 kcal/molLarson 1923, Vanderzee 1972
1.51186.3 Cl2 (g) + 2 Br- (aq) → Br2 (cr,l) + 2 Cl- (aq) ΔrH°(298.15 K) = -91.55 ± 2.00 kJ/molThomsen 1882, as quoted by CODATA Key Vals
1.45940.6 CH3Cl (g) → CCl4 (g) + 3 CH4 (g) ΔrH°(0 K) = 2.52 ± 0.30 kcal/molKarton 2017
1.41340.1 Br2 (cr,l) + 3 I- (aq) → [I3]- (aq) + 2 Br- (aq) ΔrH°(298.15 K) = -29.355 ± 0.364 kcal/molWu 1963
1.31120.1 1/2 H2 (g) + 1/2 Br2 (g) → HBr (g) ΔrH°(376.15 K) = -12.470 ± 0.170 (×1.091) kcal/molLacher 1956a, Lacher 1956
1.11113.12 HBr (g) → H (g) Br (g) ΔrH°(0 K) = 86.47 ± 0.2 kcal/molFeller 2008
1.11114.6 HBr (g) Cl (g) → HCl (g) Br (g) ΔrH°(0 K) = -15.68 ± 0.2 kcal/molFeller 2008
1.11284.1 HI (g) Br (g) → HBr (g) I (g) ΔrH°(0 K) = -16.14 ± 0.2 kcal/molFeller 2008
1.01697.7 NH3 (g) → NH3 (aq, undissoc) ΔrH°(298.15 K) = -8.456 ± 0.030 kcal/molStaveley 1971, Vanderzee 1972

Top 10 species with enthalpies of formation correlated to the ΔfH° of (NH4)Br (cr)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
90.1 BromideBr- (aq)[Br-]-120.84± 0.14kJ/mol79.90455 ±
0.00100
24959-67-9*800
90.1 Hydrogen bromideHBr (aq)Br-120.84± 0.14kJ/mol80.9119 ±
0.0010
10035-10-6*800
86.4 Hydrogen bromideHBr (aq, 3000 H2O)Br-120.60± 0.14kJ/mol80.9119 ±
0.0010
10035-10-6*842
86.4 Hydrogen bromideHBr (aq, 100 H2O)Br-119.85± 0.14kJ/mol80.9119 ±
0.0010
10035-10-6*828
86.4 Hydrogen bromideHBr (aq, 7000 H2O)Br-120.68± 0.14kJ/mol80.9119 ±
0.0010
10035-10-6*846
86.4 Hydrogen bromideHBr (aq, 20000 H2O)Br-120.74± 0.14kJ/mol80.9119 ±
0.0010
10035-10-6*852
86.4 Hydrogen bromideHBr (aq, 150 H2O)Br-120.01± 0.14kJ/mol80.9119 ±
0.0010
10035-10-6*829
86.4 Hydrogen bromideHBr (aq, 600 H2O)Br-120.35± 0.14kJ/mol80.9119 ±
0.0010
10035-10-6*834
86.4 Hydrogen bromideHBr (aq, 5000 H2O)Br-120.65± 0.14kJ/mol80.9119 ±
0.0010
10035-10-6*844
86.4 Hydrogen bromideHBr (aq, 50000 H2O)Br-120.78± 0.14kJ/mol80.9119 ±
0.0010
10035-10-6*855

Most Influential reactions involving (NH4)Br (cr)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.7861704.5 (NH4)Br (cr) → [NH4]+ (aq) Br- (aq) ΔrG°(298.15 K) = -7.849 ± 0.040 kJ/molCODATA Key Vals
0.1991704.3 (NH4)Br (cr) → [NH4]+ (aq) Br- (aq) ΔrG°(298.15 K) = -1.883 ± 0.019 kcal/molShults 1966, Stephenson 1968, est unc
0.0141695.4 (NH4)Br (cr) → NH3 (g) HBr (g) ΔrH°(298.15 K) = 45.08 ± 0.17 kcal/molSmits 1928, JANAF 3, 3rd Law
0.0131695.2 (NH4)Br (cr) → NH3 (g) HBr (g) ΔrG°(643.3 K) = 3.316 ± 0.035 (×5.076) kcal/molSmith 1914, 3rd Law
0.0041704.2 (NH4)Br (cr) → [NH4]+ (aq) Br- (aq) ΔrH°(298.15 K) = 4.007 ± 0.015 (×8.175) kcal/molStephenson 1968
0.0041704.4 (NH4)Br (cr) → [NH4]+ (aq) Br- (aq) ΔrH°(298.15 K) = 4.01 ± 0.10 (×1.242) kcal/molParker 1965, as quoted by CODATA Key Vals
0.0031695.3 (NH4)Br (cr) → NH3 (g) HBr (g) ΔrH°(298.15 K) = 45.50 ± 0.17 (×2.044) kcal/molSmits 1928, JANAF 3, 2nd Law
0.0011695.7 (NH4)Br (cr) → NH3 (g) HBr (g) ΔrG°(589.4 K) = 28.72 ± 2.13 kJ/molJohnson 1909, 3rd Law
0.0001695.1 (NH4)Br (cr) → NH3 (g) HBr (g) ΔrH°(643.3 K) = 42.77 ± 0.78 kcal/molSmith 1914, 2nd Law
0.0001695.8 (NH4)Br (cr) → NH3 (g) HBr (g) ΔrH°(589.4 K) = 197.44 ± 7.16 (×2.43) kJ/molJohnson 1909, 2nd Law


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.130 of the Thermochemical Network. Argonne National Laboratory, Lemont, Illinois 2023; available at ATcT.anl.gov
[DOI: 10.17038/CSE/1997229]
4   N. Genossar, P. B. Changala, B. Gans, J.-C. Loison, S. Hartweg, M.-A. Martin-Drumel, G. A. Garcia, J. F. Stanton, B. Ruscic, and J. H. Baraban
Ring-Opening Dynamics of the Cyclopropyl Radical and Cation: the Transition State Nature of the Cyclopropyl Cation
J. Am. Chem. Soc. 144, 18518-18525 (2022) [DOI: 10.1021/jacs.2c07740]
5   B. Ruscic and D. H. Bross
Active Thermochemical Tables: The Thermophysical and Thermochemical Properties of Methyl, CH3, and Methylene, CH2, Corrected for Nonrigid Rotor and Anharmonic Oscillator Effects.
Mol. Phys. e1969046 (2021) [DOI: 10.1080/00268976.2021.1969046]
6   J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton,
Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions
J. Chem. Phys. 155, 184109 (2021) [DOI: 10.1063/5.0069322]
7   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
8   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.