Selected ATcT [1, 2] enthalpy of formation based on version 1.130 of the Thermochemical Network [3]

This version of ATcT results[4] was generated by additional expansion of version 1.128 [5,6] to include with the calculations provided in reference [4].

Hydrogen iodide

Formula: HI (g)
CAS RN: 10034-85-2
ATcT ID: 10034-85-2*0
SMILES: I
InChI: InChI=1S/HI/h1H
InChIKey: XMBWDFGMSWQBCA-UHFFFAOYSA-N
Hills Formula: H1I1

2D Image:

I
Aliases: HI; Hydrogen iodide; Hydrogen monoiodide; Hydroiodic acid; Hydriodic acid; Iodhydric acid; Iodohydric acid; Iodohydrogen; Iodic acid; Iodine hydride; Iodine monohydride; UN 1787; UN 2197
Relative Molecular Mass: 127.912410 ± 0.000076

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
28.64326.467± 0.036kJ/mol

3D Image of HI (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of HI (g)

The 3 contributors listed below account for 95.7% of the provenance of ΔfH° of HI (g).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
78.41281.1 HI (g) → H2 (g) I2 (g) ΔrG°(721.5 K) = 23.625 ± 0.080 kJ/molTaylor 1941, 3rd Law
10.91282.1 HI (g) → 1/2 H2 (g) + 1/2 I2 (g) ΔrG°(704 K) = 11.571 ± 0.028 (×3.83) kJ/molRittenberg 1934, note HI, 3rd Law
6.31281.2 HI (g) → H2 (g) I2 (g) ΔrH°(721.5 K) = 12.583 ± 0.282 kJ/molTaylor 1941, 2nd Law

Top 10 species with enthalpies of formation correlated to the ΔfH° of HI (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
39.3 Hydrogen iodideHI (aq, 5130 H2O)I-56.648± 0.089kJ/mol127.912410 ±
0.000076
10034-85-2*958
39.3 Hydrogen iodideHI (aq, 5000 H2O)I-56.646± 0.090kJ/mol127.912410 ±
0.000076
10034-85-2*844
39.2 Hydrogen iodideHI (aq, 555.1 H2O)I-56.382± 0.090kJ/mol127.912410 ±
0.000076
10034-85-2*895
39.2 Hydrogen iodideHI (aq, 20000 H2O)I-56.734± 0.090kJ/mol127.912410 ±
0.000076
10034-85-2*852
39.2 Hydrogen iodideHI (aq, 10000 H2O)I-56.696± 0.090kJ/mol127.912410 ±
0.000076
10034-85-2*850
39.2 Hydrogen iodideHI (aq, 1500 H2O)I-56.525± 0.090kJ/mol127.912410 ±
0.000076
10034-85-2*840
39.2 Hydrogen iodideHI (aq, 50000 H2O)I-56.767± 0.090kJ/mol127.912410 ±
0.000076
10034-85-2*855
39.2 Hydrogen iodideHI (aq, 1250 H2O)I-56.499± 0.090kJ/mol127.912410 ±
0.000076
10034-85-2*954
39.2 Hydrogen iodideHI (aq, 700 H2O)I-56.416± 0.090kJ/mol127.912410 ±
0.000076
10034-85-2*835
39.1 Hydrogen iodideHI (aq, 1000 H2O)I-56.470± 0.090kJ/mol127.912410 ±
0.000076
10034-85-2*839

Most Influential reactions involving HI (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.9611288.1 HI (g) → HI (aq, 5130 H2O) ΔrH°(298.15 K) = -19.862 ± 0.020 kcal/molVanderzee 1974
0.7871281.1 HI (g) → H2 (g) I2 (g) ΔrG°(721.5 K) = 23.625 ± 0.080 kJ/molTaylor 1941, 3rd Law
0.2095907.4 CI4 (g) + 4 H2 (g) → CH4 (g) + 4 HI (g) ΔrH°(0 K) = -65.35 ± 1.0 kcal/molxyx 2016
0.1326007.1 CHF3 (g) I2 (g) → CF3I (g) HI (g) ΔrH°(298.15 K) = 17.10 ± 0.34 kcal/molGoy 1967, as quoted by Cox 1970
0.1091282.1 HI (g) → 1/2 H2 (g) + 1/2 I2 (g) ΔrG°(704 K) = 11.571 ± 0.028 (×3.83) kJ/molRittenberg 1934, note HI, 3rd Law
0.0631281.2 HI (g) → H2 (g) I2 (g) ΔrH°(721.5 K) = 12.583 ± 0.282 kJ/molTaylor 1941, 2nd Law
0.0615971.4 CH3I (g) HI (g) → I2 (g) CH4 (g) ΔrG°(669 K) = -10.34 ± 0.09 (×1.834) kcal/molGoy 1965, 3rd Law
0.0575971.2 CH3I (g) HI (g) → I2 (g) CH4 (g) ΔrG°(630.5 K) = -10.48 ± 0.08 (×2.134) kcal/molGolden 1965, 3rd Law, Cox 1970
0.0551374.2 HOI (g) H2 (g) → H2O (g) HI (g) ΔrH°(0 K) = -37.92 ± 3.1 kcal/molRuscic unpub
0.0521374.3 HOI (g) H2 (g) → H2O (g) HI (g) ΔrH°(0 K) = -37.80 ± 3.2 kcal/molRuscic unpub
0.0461374.1 HOI (g) H2 (g) → H2O (g) HI (g) ΔrH°(0 K) = -36.97 ± 3.4 kcal/molRuscic unpub
0.0373179.4 CH3CHCH2 (g) + 2 HI (g) → CH3CH2CH3 (g) I2 (g) ΔrG°(597 K) = -5.79 ± 0.20 kcal/molNangia 1964, Nangia 1964a, 3rd Law, est unc
0.0271287.2 HI (g) → HI (aq) ΔrG°(298.15 K) = -53.93 ± 0.50 kJ/molBates 1919, as quoted by CODATA Key Vals
0.0221284.1 HI (g) Br (g) → HBr (g) I (g) ΔrH°(0 K) = -16.14 ± 0.2 kcal/molFeller 2008
0.0182839.2 ICN (g) HBr (g) → BrCN (g) HI (g) ΔrH°(0 K) = 5.21 ± 3.1 kcal/molRuscic unpub
0.0162839.3 ICN (g) HBr (g) → BrCN (g) HI (g) ΔrH°(0 K) = 5.20 ± 3.2 kcal/molRuscic unpub
0.0152836.2 ICN (g) H2 (g) → HCN (g) HI (g) ΔrH°(0 K) = -15.93 ± 3.1 kcal/molRuscic unpub
0.0152839.1 ICN (g) HBr (g) → BrCN (g) HI (g) ΔrH°(0 K) = 5.31 ± 3.4 kcal/molRuscic unpub
0.0142836.3 ICN (g) H2 (g) → HCN (g) HI (g) ΔrH°(0 K) = -15.84 ± 3.2 kcal/molRuscic unpub
0.0122836.1 ICN (g) H2 (g) → HCN (g) HI (g) ΔrH°(0 K) = -14.57 ± 3.4 kcal/molRuscic unpub


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.130 of the Thermochemical Network. Argonne National Laboratory, Lemont, Illinois 2023; available at ATcT.anl.gov
[DOI: 10.17038/CSE/1997229]
4   N. Genossar, P. B. Changala, B. Gans, J.-C. Loison, S. Hartweg, M.-A. Martin-Drumel, G. A. Garcia, J. F. Stanton, B. Ruscic, and J. H. Baraban
Ring-Opening Dynamics of the Cyclopropyl Radical and Cation: the Transition State Nature of the Cyclopropyl Cation
J. Am. Chem. Soc. 144, 18518-18525 (2022) [DOI: 10.1021/jacs.2c07740]
5   B. Ruscic and D. H. Bross
Active Thermochemical Tables: The Thermophysical and Thermochemical Properties of Methyl, CH3, and Methylene, CH2, Corrected for Nonrigid Rotor and Anharmonic Oscillator Effects.
Mol. Phys. e1969046 (2021) [DOI: 10.1080/00268976.2021.1969046]
6   J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton,
Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions
J. Chem. Phys. 155, 184109 (2021) [DOI: 10.1063/5.0069322]
7   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
8   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.