Selected ATcT [1, 2] enthalpy of formation based on version 1.122x of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122v [4] to include species relevant to the study of bond dissociation enthalpies of representative aromatic aldehydes [5].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
Carbon anionC- (g)[C-]589.634594.781± 0.044kJ/mol12.01125 ±
0.00080
14337-00-9*0

Representative Geometry of C- (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of C- (g)

The 20 contributors listed below account only for 32.4% of the provenance of ΔfH° of C- (g).
A total of 999 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
6.91891.2 CO (g) → C+ (g) O (g) ΔrH°(0 K) = 22.3713 ± 0.0015 eVNg 2007
5.61987.1 H2 (g) C (graphite) → CH4 (g) ΔrG°(1165 K) = 37.521 ± 0.068 kJ/molSmith 1946, note COf, 3rd Law
3.4120.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
2.01843.7 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.464 ± 0.024 kJ/molHawtin 1966, note CO2e
1.81899.5 C (graphite) CO2 (g) → 2 CO (g) ΔrG°(1165 K) = -33.545 ± 0.058 kJ/molSmith 1946, note COf, 3rd Law
1.31878.5 CO (g) → C (g) O (g) ΔrH°(0 K) = 89632 ± 27 cm-1Ruscic 2003
1.25574.8 C6H6 (g) → 6 C (g) + 6 H (g) ΔrH°(0 K) = 5463.0 ± 1.8 kJ/molHarding 2011
1.21876.3 CO (g) → C (g) O (g) ΔrH°(0 K) = 89620 ± 29 cm-1Douglas 1955, Schmid 1935, note COj
1.07414.1 C60 (cr,l) + 60 O2 (g) → 60 CO2 (g) ΔrH°(298.15 K) = -25965 ± 20 kJ/molKolesov 1996, est unc
1.02139.1 CH2CH2 (g) + 3 O2 (g) → 2 CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -1411.18 ± 0.30 kJ/molRossini 1937
0.95574.5 C6H6 (g) → 6 C (g) + 6 H (g) ΔrH°(0 K) = 1305.43 ± 0.50 kcal/molKarton 2017
0.81843.4 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.462 ± 0.038 kJ/molLewis 1965, note CO2d
0.81843.5 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.468 ± 0.038 kJ/molFraser 1952, note CO2f
0.65574.4 C6H6 (g) → 6 C (g) + 6 H (g) ΔrH°(0 K) = 1306.17 ± 0.60 kcal/molKarton 2009a
0.61826.1 C- (g) → C (g) ΔrH°(0 K) = 10179.67 ± 0.30 cm-1Scheer 1998d, Scheer 1998, note unc
0.51843.10 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -94.051 ± 0.011 kcal/molProsen 1944a, Cox 1970, NBS TN270, NBS Tables 1989
0.53203.9 CH3CH2CH2CH3 (g) → 4 C (g) + 10 H (g) ΔrH°(0 K) = 1220.02 ± 0.35 kcal/molKarton 2017
0.51847.7 CO2 (g) → C (g) + 2 O (g) ΔrH°(0 K) = 1598.16 ± 0.56 kJ/molHarding 2008
0.43435.6 CH3CH2CH2CH2CH3 (g) → 5 C (g) + 12 H (g) ΔrH°(0 K) = 1496.83 ± 0.50 kcal/molKarton 2017
0.45986.6 N(CHCHCHCHCH) (g) → 5 C (g) N (g) + 5 H (g) ΔrH°(0 K) = 1183.35 ± 0.60 kcal/molKarton 2009a

Top 10 species with enthalpies of formation correlated to the ΔfH° of C- (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
99.6 CarbonC (g)[C]711.411716.896± 0.044kJ/mol12.01070 ±
0.00080
7440-44-0*0
99.6 CarbonC (g, triplet)[C]711.411716.896± 0.044kJ/mol12.01070 ±
0.00080
7440-44-0*1
99.6 CarbonC (g, singlet)[C]833.342838.488± 0.044kJ/mol12.01070 ±
0.00080
7440-44-0*2
99.6 CarbonC (g, quintuplet)[C]1114.9741120.120± 0.044kJ/mol12.01070 ±
0.00080
7440-44-0*3
99.6 Carbon cationC+ (g)[C+]1797.8641803.462± 0.044kJ/mol12.01015 ±
0.00080
14067-05-1*0
99.5 Carbon dication[C]+2 (g)[C++]4150.4804155.627± 0.044kJ/mol12.00960 ±
0.00080
16092-61-8*0
94.8 EthynyleneC2 (g)[C]=[C]820.017828.483± 0.092kJ/mol24.0214 ±
0.0016
12070-15-4*0
94.8 EthynyleneC2 (g, singlet)[C]=[C]820.017826.590± 0.092kJ/mol24.0214 ±
0.0016
12070-15-4*2
94.8 EthynyleneC2 (g, triplet)[C]=[C]827.241833.946± 0.092kJ/mol24.0214 ±
0.0016
12070-15-4*1
87.4 Carbon trication[C]+3 (g)[C+3]8770.9488776.095± 0.050kJ/mol12.00905 ±
0.00080
14067-06-2*0

Most Influential reactions involving C- (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.9921826.1 C- (g) → C (g) ΔrH°(0 K) = 10179.67 ± 0.30 cm-1Scheer 1998d, Scheer 1998, note unc
0.6782063.1 [CH]- (g) → C- (g) H (g) ΔrH°(0 K) = 78.83 ± 0.06 kcal/molFeller 2016, note unc2
0.1971837.1 [C]-4 (g) → C- (g) ΔrH°(0 K) = -21.931 ± 0.061 eVRuscic G4
0.1222045.1 [CH2]- (g) → C- (g) + 2 H (g) ΔrH°(0 K) = 165.69 ± 0.12 kcal/molFeller 2016, note unc2
0.0822008.1 [CH3]- (g) → C- (g) + 3 H (g) ΔrH°(0 K) = 262.0 ± 0.2 kcal/molFeller 2016, note unc2
0.0081837.3 [C]-4 (g) → C- (g) ΔrH°(0 K) = -21.674 ± 0.090 (×3.364) eVRuscic CBS-n
0.0021826.2 C- (g) → C (g) ΔrH°(0 K) = 1.2629 ± 0.0003 (×2.594) eVFeldmann 1977
0.0021826.3 C- (g) → C (g) ΔrH°(0 K) = 1.2621 ± 0.0008 eVFeller 2016, note unc2
0.0011826.4 C- (g) → C (g) ΔrH°(0 K) = 1.26273 ± 0.00088 eVKlopper 2010
0.0011914.1 [C2]- (g) → C (g) C- (g) ΔrH°(0 K) = 188.7 ± 1.5 (×1.139) kcal/molSordo 2001, Chan 2004
0.0011826.5 C- (g) → C (g) ΔrH°(0 K) = 1.26288 ± 0.00100 eVOliveira 1999, Martin 1998a, est unc
0.0001826.6 C- (g) → C (g) ΔrH°(0 K) = 1.265 ± 0.003 eVCleland 2011
0.0002406.1 [CN]- (g) → C- (g) N (g) ΔrH°(0 K) = 10.28 ± 0.1 eVPolak 2002, est unc
0.0002145.1 CH2CH2 (g) → [CH4]+ (g) C- (g) ΔrH°(0 K) = 17.40 ± 0.16 eVPlessis 1987
0.0001837.4 [C]-4 (g) → C- (g) ΔrH°(0 K) = -25.941 ± 0.050 (×79.48) eVRuscic W1RO
0.0002406.2 [CN]- (g) → C- (g) N (g) ΔrH°(0 K) = 10.17 ± 0.1 (×1.576) eVPolak 2002, est unc
0.0001826.7 C- (g) → C (g) ΔrH°(0 K) = 1.262 ± 0.010 eVGdanitz 1999, est unc
0.0001826.9 C- (g) → C (g) ΔrH°(0 K) = 1.259 ± 0.050 eVGutsev 1998, est unc
0.0001826.15 C- (g) → C (g) ΔrH°(0 K) = 1.252 ± 0.050 eVRuscic W1RO
0.0001826.12 C- (g) → C (g) ΔrH°(0 K) = 1.222 ± 0.061 eVRuscic G4


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122x of the Thermochemical Network, Argonne National Laboratory, Lemont, Illinois 2022; available at ATcT.anl.gov
[DOI: 10.17038/CSE/1885922]
4   D. P. Zaleski, R. Sivaramakrishnan, H. R. Weller, N. A Seifert, D. H. Bross, B. Ruscic, K. B. Moore III, S. N. Elliott, A. V. Copan, L. B. Harding, S. J. Klippenstein, R. W. Field, and K. Prozument,
Substitution Reactions in the Pyrolysis of Acetone Revealed through a Modeling, Experiment, Theory Paradigm.
J. Am. Chem. Soc. 143, 3124-3152 (2021) [DOI: 10.1021/jacs.0c11677]
5   Y. Ren, L. Zhou, A. Mellouki, V. DaĆ«le, M. Idir, S. S. Brown, B. Ruscic, Robert S. Paton, M. R. McGillen, and A. R. Ravishankara,
Reactions of NO3 with Aromatic Aldehydes: Gas-Phase Kinetics and Insights into the Mechanism of the Reaction.
Atmos. Chem. Phys. 21, 13537-13551 (2021) [DOI: 10.5194/acp2021-228]
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
7   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6,7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.