Selected ATcT [1, 2] enthalpy of formation based on version 1.122x of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122v [4] to include species relevant to the study of bond dissociation enthalpies of representative aromatic aldehydes [5].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
Carbon dioxideCO2 (g)C(=O)=O-393.110-393.476± 0.015kJ/mol44.00950 ±
0.00100
124-38-9*0

Representative Geometry of CO2 (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of CO2 (g)

The 8 contributors listed below account for 91.5% of the provenance of ΔfH° of CO2 (g).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
34.91843.7 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.464 ± 0.024 kJ/molHawtin 1966, note CO2e
13.91843.5 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.468 ± 0.038 kJ/molFraser 1952, note CO2f
13.91843.4 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.462 ± 0.038 kJ/molLewis 1965, note CO2d
9.41843.10 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -94.051 ± 0.011 kcal/molProsen 1944a, Cox 1970, NBS TN270, NBS Tables 1989
6.41843.6 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.462 ± 0.056 kJ/molHawtin 1966, note CO2e
5.21843.2 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.498 ± 0.062 kJ/molDewey 1938, note CO2, Rossini 1938, note CO2c
4.91843.3 C (graphite) O2 (g) → CO2 (g) ΔrH°(303.15 K) = -393.447 ± 0.064 kJ/molJessup 1938, note CO2a, Rossini 1938, note CO2c
2.71843.1 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.560 ± 0.055 (×1.542) kJ/molProsen 1944, note CO2b

Top 10 species with enthalpies of formation correlated to the ΔfH° of CO2 (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
98.9 Carbon dioxide cation[CO2]+ (g)[C+](=O)=O936.091936.925± 0.017kJ/mol44.00895 ±
0.00100
12181-61-2*0
78.6 Carbon dioxideCO2 (aq, undissoc)C(=O)=O-413.196± 0.019kJ/mol44.00950 ±
0.00100
124-38-9*1000
57.9 Benzoic acidC6H5C(O)OH (cr,l)c1ccc(cc1)C(=O)O-367.30-384.72± 0.17kJ/mol122.1213 ±
0.0056
65-85-0*500
50.2 Benzoic acidC6H5C(O)OH (g)c1ccc(cc1)C(=O)O-274.30-294.10± 0.19kJ/mol122.1213 ±
0.0056
65-85-0*0
44.0 Succinic acid(CH2C(O)OH)2 (cr,l)OC(=O)CCC(=O)O-918.47-940.19± 0.12kJ/mol118.0880 ±
0.0034
110-15-6*500
43.7 Carbonic acidC(O)(OH)2 (aq, undissoc)OC(=O)O-698.991± 0.030kJ/mol62.0248 ±
0.0012
463-79-6*1000
37.4 BenzeneC6H6 (cr,l)c1ccccc150.8549.30± 0.22kJ/mol78.1118 ±
0.0048
71-43-2*500
37.4 BenzeneC6H6 (g)c1ccccc1100.7583.24± 0.22kJ/mol78.1118 ±
0.0048
71-43-2*0
37.4 Benzene cation[C6H6]+ (g)c1ccc(cc1)[H+]992.65976.18± 0.22kJ/mol78.1113 ±
0.0048
34504-50-2*0
37.1 Benzoyl chlorideC6H5C(O)Cl (cr,l)c1ccc(cc1)C(=O)Cl-157.08± 0.26kJ/mol140.5667 ±
0.0057
98-88-4*500

Most Influential reactions involving CO2 (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
1.0004920.1 CH2CHCl (s, poly) + 5/2 O2 (g) → 2 CO2 (g) H2O (cr,l) HCl (aq, 600 H2O) ΔrH°(298.15 K) = -273.72 ± 0.3 kcal/molSinke 1958, Manion 2002, note unc3
1.0005554.1 ICH2CH2OH (l) + 11/2 O2 (g) → 4 CO2 (g) + 5 H2O (cr,l) I2 (cr,l) ΔrH°(298.15 K) = -2588.56 ± 4.8 kJ/molBernardes 2007
1.0006156.1 (CH3)2CHCH2C(CH3)3 (cr,l) + 25/2 O2 (g) → 8 CO2 (g) + 9 H2O (cr,l) ΔrH°(298.15 K) = -1305.30 ± 0.35 kcal/molProsen 1945b, as quoted by Pedley 1986
0.9982633.1 CH2O (cr, polyoxymethylene) O2 (g) → CO2 (g) H2O (cr,l) ΔrH°(298.15 K) = -121.518 ± 0.048 kcal/molParks 1963, note std dev, mw conversion
0.9974987.1 CI4 (cr, monoclinic) O2 (g) → CO2 (g) + 2 I2 (cr,l) ΔrH°(298.15 K) = -786.4 ± 8.0 kJ/molCarson 1993
0.9826201.1 CH2ICH2I (cr,l) + 3 O2 (g) → 2 CO2 (g) + 2 H2O (cr,l) I2 (cr,l) ΔrH°(298.15 K) = -1368.0 ± 0.6 kJ/molCarson 1994, as quoted by NIST WebBook
0.9794490.2 CH3CH2C(O)OH (cr,l) + 7/2 O2 (g) → 3 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -365.266 ± 0.037 kcal/molLebedeva 1964
0.9764709.1 NH2CN (cr) + 3/2 O2 (g) → CO2 (g) H2O (cr,l) N2 (g) ΔrH°(298.15 K) = -176.42 ± 0.13 kcal/molSalley 1948, as quoted by Cox 1970
0.9727315.1 CH3CH2NH2 (cr,l) + 15/2 O2 (g) → 4 CO2 (g) + 7 H2O (cr,l) N2 (g) ΔrH°(298.15 K) = -819.0 ± 0.24 kcal/molJaffe 1970, Cox 1970, as quoted by Cox 1970
0.9693315.1 CH3CH(CH2CH2) (l) + 6 O2 (g) → 4 CO2 (g) + 4 H2O (l) ΔrH°(298.15 K) = -649.87 ± 0.14 kcal/molGood 1971
0.9576187.1 (CH2COOH)2(NH3)2 (cr) + 5 O2 (g) → 4 CO2 (g) + 6 H2O (cr,l) N2 (g) ΔrH°(298.15 K) = -503.411 ± 0.110 kcal/molVanderzee 1972c
0.9522808.1 CO2 (g) H2O (cr,l) → [HOC(O)O]- (aq) H+ (aq) ΔrG°(298.15 K) = 10.666 ± 0.007 kcal/molBerg 1978a, CODATA Key Vals, Bates 1978
0.9391849.1 CO2 (g) → [CO2]+ (g) ΔrH°(0 K) = 111112.29 ± 0.18 cm-1Hollenstein 2019
0.8916186.1 (CH2C(O)OH)2(NH3) (cr) + 17/2 O2 (g) → 8 CO2 (g) + 9 H2O (cr,l) N2 (g) ΔrH°(298.15 K) = -856.796 ± 0.357 kcal/molVanderzee 1972c
0.8663549.1 CH2CHCH2CH2CHCH2 (cr,l) + 17/2 O2 (g) → 5 H2O (cr,l) + 6 CO2 (g) ΔrH°(298.15 K) = -918.81 ± 0.07 kcal/molCoops 1946, Cox 1970
0.8427322.1 CH3CH2CH2NH2 (cr,l) + 21/2 O2 (g) → 6 CO2 (g) + 9 H2O (cr,l) N2 (g) ΔrH°(298.15 K) = -1130.58 ± 0.20 kcal/molSmith 1967a, est unc
0.8346353.1 CH(O)NH2 (cr,l) + 5/2 O2 (g) → 2 CO2 (g) + 3 H2O (cr,l) N2 (g) ΔrH°(298.15 K) = -1142.8 ± 0.6 kJ/molEmelyanenko 2011
0.8327519.1 CH3C(O)C(O)OH (cr,l) + 5/2 O2 (g) → 3 CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -1163.4 ± 0.8 kJ/molEmelyanenko 2018
0.8177398.1 C6H5CCC6H5 (cr,l) + 33/2 O2 (g) → 14 CO2 (g) + 5 H2O (cr,l) ΔrH°(298.15 K) = -7250.4 ± 1.0 kJ/molCoops 1953a
0.8075787.2 C6H5OCH3 (l) + 17/2 O2 (g) → 7 CO2 (g) + 4 H2O (cr,l) ΔrH°(298.15 K) = -902.9 ± 0.2 kcal/molLebedeva 1972, as quoted by Pedley 1986


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122x of the Thermochemical Network, Argonne National Laboratory, Lemont, Illinois 2022; available at ATcT.anl.gov
[DOI: 10.17038/CSE/1885922]
4   D. P. Zaleski, R. Sivaramakrishnan, H. R. Weller, N. A Seifert, D. H. Bross, B. Ruscic, K. B. Moore III, S. N. Elliott, A. V. Copan, L. B. Harding, S. J. Klippenstein, R. W. Field, and K. Prozument,
Substitution Reactions in the Pyrolysis of Acetone Revealed through a Modeling, Experiment, Theory Paradigm.
J. Am. Chem. Soc. 143, 3124-3152 (2021) [DOI: 10.1021/jacs.0c11677]
5   Y. Ren, L. Zhou, A. Mellouki, V. DaĆ«le, M. Idir, S. S. Brown, B. Ruscic, Robert S. Paton, M. R. McGillen, and A. R. Ravishankara,
Reactions of NO3 with Aromatic Aldehydes: Gas-Phase Kinetics and Insights into the Mechanism of the Reaction.
Atmos. Chem. Phys. 21, 13537-13551 (2021) [DOI: 10.5194/acp2021-228]
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
7   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6,7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.