Selected ATcT [1, 2] enthalpy of formation based on version 1.122x of the Thermochemical Network [3]This version of ATcT results was generated from an expansion of version 1.122v [4] to include species relevant to the study of bond dissociation enthalpies of representative aromatic aldehydes [5].
|
Species Name |
Formula |
Image |
ΔfH°(0 K) |
ΔfH°(298.15 K) |
Uncertainty |
Units |
Relative Molecular Mass |
ATcT ID |
Carbon dioxide | CO2 (g) | | -393.110 | -393.476 | ± 0.015 | kJ/mol | 44.00950 ± 0.00100 | 124-38-9*0 |
|
Representative Geometry of CO2 (g) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of CO2 (g)The 8 contributors listed below account for 91.5% of the provenance of ΔfH° of CO2 (g).
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 34.9 | 1843.7 | C (graphite) + O2 (g) → CO2 (g)  | ΔrH°(298.15 K) = -393.464 ± 0.024 kJ/mol | Hawtin 1966, note CO2e | 13.9 | 1843.5 | C (graphite) + O2 (g) → CO2 (g)  | ΔrH°(298.15 K) = -393.468 ± 0.038 kJ/mol | Fraser 1952, note CO2f | 13.9 | 1843.4 | C (graphite) + O2 (g) → CO2 (g)  | ΔrH°(298.15 K) = -393.462 ± 0.038 kJ/mol | Lewis 1965, note CO2d | 9.4 | 1843.10 | C (graphite) + O2 (g) → CO2 (g)  | ΔrH°(298.15 K) = -94.051 ± 0.011 kcal/mol | Prosen 1944a, Cox 1970, NBS TN270, NBS Tables 1989 | 6.4 | 1843.6 | C (graphite) + O2 (g) → CO2 (g)  | ΔrH°(298.15 K) = -393.462 ± 0.056 kJ/mol | Hawtin 1966, note CO2e | 5.2 | 1843.2 | C (graphite) + O2 (g) → CO2 (g)  | ΔrH°(298.15 K) = -393.498 ± 0.062 kJ/mol | Dewey 1938, note CO2, Rossini 1938, note CO2c | 4.9 | 1843.3 | C (graphite) + O2 (g) → CO2 (g)  | ΔrH°(303.15 K) = -393.447 ± 0.064 kJ/mol | Jessup 1938, note CO2a, Rossini 1938, note CO2c | 2.7 | 1843.1 | C (graphite) + O2 (g) → CO2 (g)  | ΔrH°(298.15 K) = -393.560 ± 0.055 (×1.542) kJ/mol | Prosen 1944, note CO2b |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of CO2 (g) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 98.9 | Carbon dioxide cation | [CO2]+ (g) | | 936.091 | 936.925 | ± 0.017 | kJ/mol | 44.00895 ± 0.00100 | 12181-61-2*0 | 78.6 | Carbon dioxide | CO2 (aq, undissoc) | | | -413.196 | ± 0.019 | kJ/mol | 44.00950 ± 0.00100 | 124-38-9*1000 | 57.9 | Benzoic acid | C6H5C(O)OH (cr,l) | | -367.30 | -384.72 | ± 0.17 | kJ/mol | 122.1213 ± 0.0056 | 65-85-0*500 | 50.2 | Benzoic acid | C6H5C(O)OH (g) | | -274.30 | -294.10 | ± 0.19 | kJ/mol | 122.1213 ± 0.0056 | 65-85-0*0 | 44.0 | Succinic acid | (CH2C(O)OH)2 (cr,l) | | -918.47 | -940.19 | ± 0.12 | kJ/mol | 118.0880 ± 0.0034 | 110-15-6*500 | 43.7 | Carbonic acid | C(O)(OH)2 (aq, undissoc) | | | -698.991 | ± 0.030 | kJ/mol | 62.0248 ± 0.0012 | 463-79-6*1000 | 37.4 | Benzene | C6H6 (cr,l) | | 50.85 | 49.30 | ± 0.22 | kJ/mol | 78.1118 ± 0.0048 | 71-43-2*500 | 37.4 | Benzene | C6H6 (g) | | 100.75 | 83.24 | ± 0.22 | kJ/mol | 78.1118 ± 0.0048 | 71-43-2*0 | 37.4 | Benzene cation | [C6H6]+ (g) | | 992.65 | 976.18 | ± 0.22 | kJ/mol | 78.1113 ± 0.0048 | 34504-50-2*0 | 37.1 | Benzoyl chloride | C6H5C(O)Cl (cr,l) | | | -157.08 | ± 0.26 | kJ/mol | 140.5667 ± 0.0057 | 98-88-4*500 |
|
Most Influential reactions involving CO2 (g)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 1.000 | 4920.1 | CH2CHCl (s, poly) + 5/2 O2 (g) → 2 CO2 (g) + H2O (cr,l) + HCl (aq, 600 H2O)  | ΔrH°(298.15 K) = -273.72 ± 0.3 kcal/mol | Sinke 1958, Manion 2002, note unc3 | 1.000 | 5554.1 | 2 ICH2CH2OH (l) + 11/2 O2 (g) → 4 CO2 (g) + 5 H2O (cr,l) + I2 (cr,l)  | ΔrH°(298.15 K) = -2588.56 ± 4.8 kJ/mol | Bernardes 2007 | 1.000 | 6156.1 | (CH3)2CHCH2C(CH3)3 (cr,l) + 25/2 O2 (g) → 8 CO2 (g) + 9 H2O (cr,l)  | ΔrH°(298.15 K) = -1305.30 ± 0.35 kcal/mol | Prosen 1945b, as quoted by Pedley 1986 | 0.998 | 2633.1 | CH2O (cr, polyoxymethylene) + O2 (g) → CO2 (g) + H2O (cr,l)  | ΔrH°(298.15 K) = -121.518 ± 0.048 kcal/mol | Parks 1963, note std dev, mw conversion | 0.997 | 4987.1 | CI4 (cr, monoclinic) + O2 (g) → CO2 (g) + 2 I2 (cr,l)  | ΔrH°(298.15 K) = -786.4 ± 8.0 kJ/mol | Carson 1993 | 0.982 | 6201.1 | CH2ICH2I (cr,l) + 3 O2 (g) → 2 CO2 (g) + 2 H2O (cr,l) + I2 (cr,l)  | ΔrH°(298.15 K) = -1368.0 ± 0.6 kJ/mol | Carson 1994, as quoted by NIST WebBook | 0.979 | 4490.2 | CH3CH2C(O)OH (cr,l) + 7/2 O2 (g) → 3 CO2 (g) + 3 H2O (cr,l)  | ΔrH°(298.15 K) = -365.266 ± 0.037 kcal/mol | Lebedeva 1964 | 0.976 | 4709.1 | NH2CN (cr) + 3/2 O2 (g) → CO2 (g) + H2O (cr,l) + N2 (g)  | ΔrH°(298.15 K) = -176.42 ± 0.13 kcal/mol | Salley 1948, as quoted by Cox 1970 | 0.972 | 7315.1 | 2 CH3CH2NH2 (cr,l) + 15/2 O2 (g) → 4 CO2 (g) + 7 H2O (cr,l) + N2 (g)  | ΔrH°(298.15 K) = -819.0 ± 0.24 kcal/mol | Jaffe 1970, Cox 1970, as quoted by Cox 1970 | 0.969 | 3315.1 | CH3CH(CH2CH2) (l) + 6 O2 (g) → 4 CO2 (g) + 4 H2O (l)  | ΔrH°(298.15 K) = -649.87 ± 0.14 kcal/mol | Good 1971 | 0.957 | 6187.1 | (CH2COOH)2(NH3)2 (cr) + 5 O2 (g) → 4 CO2 (g) + 6 H2O (cr,l) + N2 (g)  | ΔrH°(298.15 K) = -503.411 ± 0.110 kcal/mol | Vanderzee 1972c | 0.952 | 2808.1 | CO2 (g) + H2O (cr,l) → [HOC(O)O]- (aq) + H+ (aq)  | ΔrG°(298.15 K) = 10.666 ± 0.007 kcal/mol | Berg 1978a, CODATA Key Vals, Bates 1978 | 0.939 | 1849.1 | CO2 (g) → [CO2]+ (g)  | ΔrH°(0 K) = 111112.29 ± 0.18 cm-1 | Hollenstein 2019 | 0.891 | 6186.1 | 2 (CH2C(O)OH)2(NH3) (cr) + 17/2 O2 (g) → 8 CO2 (g) + 9 H2O (cr,l) + N2 (g)  | ΔrH°(298.15 K) = -856.796 ± 0.357 kcal/mol | Vanderzee 1972c | 0.866 | 3549.1 | CH2CHCH2CH2CHCH2 (cr,l) + 17/2 O2 (g) → 5 H2O (cr,l) + 6 CO2 (g)  | ΔrH°(298.15 K) = -918.81 ± 0.07 kcal/mol | Coops 1946, Cox 1970 | 0.842 | 7322.1 | 2 CH3CH2CH2NH2 (cr,l) + 21/2 O2 (g) → 6 CO2 (g) + 9 H2O (cr,l) + N2 (g)  | ΔrH°(298.15 K) = -1130.58 ± 0.20 kcal/mol | Smith 1967a, est unc | 0.834 | 6353.1 | 2 CH(O)NH2 (cr,l) + 5/2 O2 (g) → 2 CO2 (g) + 3 H2O (cr,l) + N2 (g)  | ΔrH°(298.15 K) = -1142.8 ± 0.6 kJ/mol | Emelyanenko 2011 | 0.832 | 7519.1 | CH3C(O)C(O)OH (cr,l) + 5/2 O2 (g) → 3 CO2 (g) + 2 H2O (cr,l)  | ΔrH°(298.15 K) = -1163.4 ± 0.8 kJ/mol | Emelyanenko 2018 | 0.817 | 7398.1 | C6H5CCC6H5 (cr,l) + 33/2 O2 (g) → 14 CO2 (g) + 5 H2O (cr,l)  | ΔrH°(298.15 K) = -7250.4 ± 1.0 kJ/mol | Coops 1953a | 0.807 | 5787.2 | C6H5OCH3 (l) + 17/2 O2 (g) → 7 CO2 (g) + 4 H2O (cr,l)  | ΔrH°(298.15 K) = -902.9 ± 0.2 kcal/mol | Lebedeva 1972, as quoted by Pedley 1986 |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.122x of the Thermochemical Network, Argonne National Laboratory, Lemont, Illinois 2022; available at ATcT.anl.gov [DOI: 10.17038/CSE/1885922]
|
4
|
|
D. P. Zaleski, R. Sivaramakrishnan, H. R. Weller, N. A Seifert, D. H. Bross, B. Ruscic, K. B. Moore III, S. N. Elliott, A. V. Copan, L. B. Harding, S. J. Klippenstein, R. W. Field, and K. Prozument,
Substitution Reactions in the Pyrolysis of Acetone Revealed through a Modeling, Experiment, Theory Paradigm.
J. Am. Chem. Soc. 143, 3124-3152 (2021)
[DOI: 10.1021/jacs.0c11677]
|
5
|
|
Y. Ren, L. Zhou, A. Mellouki, V. Daƫle, M. Idir, S. S. Brown, B. Ruscic, Robert S. Paton, M. R. McGillen, and A. R. Ravishankara,
Reactions of NO3 with Aromatic Aldehydes: Gas-Phase Kinetics and Insights into the Mechanism of the Reaction.
Atmos. Chem. Phys. 21, 13537-13551 (2021)
[DOI: 10.5194/acp2021-228]
|
6
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
7
|
|
B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019)
[DOI: 10.1016/B978-0-444-64087-1.00001-2]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6,7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|