Selected ATcT [1, 2] enthalpy of formation based on version 1.122x of the Thermochemical Network [3]This version of ATcT results was generated from an expansion of version 1.122v [4] to include species relevant to the study of bond dissociation enthalpies of representative aromatic aldehydes [5].
|
Species Name |
Formula |
Image |
ΔfH°(0 K) |
ΔfH°(298.15 K) |
Uncertainty |
Units |
Relative Molecular Mass |
ATcT ID |
n-Butane | CH3CH2CH2CH3 (g) | | -98.33 | -125.64 | ± 0.24 | kJ/mol | 58.1222 ± 0.0033 | 106-97-8*0 |
|
Representative Geometry of CH3CH2CH2CH3 (g) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of CH3CH2CH2CH3 (g)The 20 contributors listed below account only for 48.8% of the provenance of ΔfH° of CH3CH2CH2CH3 (g). A total of 429 contributors would be needed to account for 90% of the provenance.
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 7.3 | 3205.1 | CH3CH2CH2CH3 (g) + 13/2 O2 (g) → 4 CO2 (g) + 5 H2O (cr,l)  | ΔrH°(298.15 K) = -2877.52 ± 0.63 kJ/mol | Pittam 1972 | 5.7 | 120.2 | 1/2 O2 (g) + H2 (g) → H2O (cr,l)  | ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/mol | Rossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930 | 4.0 | 3319.1 | CH2CHCHCH2 (g) + 2 H2 (g) → CH3CH2CH2CH3 (g)  | ΔrH°(355.15 K) = -57.079 ± 0.10 kcal/mol | Kistiakowsky 1936, Prosen 1945c | 4.0 | 3437.5 | CH3CH2CH2CH2CH3 (g) + CH3CH2CH3 (g) → 2 CH3CH2CH2CH3 (g)  | ΔrH°(0 K) = -0.12 ± 0.35 kcal/mol | Karton 2009b | 2.8 | 3296.1 | CH2CHCH2CH3 (g) + 6 O2 (g) → 4 CO2 (g) + 4 H2O (cr,l)  | ΔrH°(298.15 K) = -649.33 ± 0.18 kcal/mol | Prosen 1951, as quoted by Cox 1970 | 2.6 | 1987.1 | 2 H2 (g) + C (graphite) → CH4 (g)  | ΔrG°(1165 K) = 37.521 ± 0.068 kJ/mol | Smith 1946, note COf, 3rd Law | 2.3 | 3205.2 | CH3CH2CH2CH3 (g) + 13/2 O2 (g) → 4 CO2 (g) + 5 H2O (cr,l)  | ΔrH°(298.15 K) = -687.41 ± 0.15 (×1.795) kcal/mol | Prosen 1951 | 1.9 | 3443.1 | CH3CH2CH(CH3)2 (g) + CH3CH2CH3 (g) → CH(CH3)3 (g) + CH3CH2CH2CH3 (g)  | ΔrH°(298.15 K) = -0.48 ± 0.31 kcal/mol | Prosen 1945 | 1.9 | 3280.1 | CH3CHCHCH3 (g, trans) + 6 O2 (g) → 4 CO2 (g) + 4 H2O (cr,l)  | ΔrH°(298.15 K) = -646.90 ± 0.23 kcal/mol | Prosen 1951, as quoted by Cox 1970 | 1.6 | 3297.1 | CH2CHCH2CH3 (g) + H2 (g) → CH3CH2CH2CH3 (g)  | ΔrH°(298.15 K) = -30.10 ± 0.10 kcal/mol | Kistiakowsky 1935a, as quoted by Cox 1970 | 1.5 | 3215.2 | CH(CH3)3 (g) → CH3CH2CH2CH3 (g)  | ΔrH°(298.15 K) = 8.59 ± 0.79 kJ/mol | Prosen 1951 | 1.5 | 3203.9 | CH3CH2CH2CH3 (g) → 4 C (g) + 10 H (g)  | ΔrH°(0 K) = 1220.02 ± 0.35 kcal/mol | Karton 2017 | 1.5 | 1843.7 | C (graphite) + O2 (g) → CO2 (g)  | ΔrH°(298.15 K) = -393.464 ± 0.024 kJ/mol | Hawtin 1966, note CO2e | 1.4 | 3483.1 | CH3CH2CH2CH2CH2CH3 (g) + CH3CH2CH3 (g) → CH3CH2CH2CH2CH3 (g) + CH3CH2CH2CH3 (g)  | ΔrH°(298.15 K) = -0.03 ± 0.31 kcal/mol | Prosen 1945 | 1.4 | 3213.1 | CH(CH3)3 (g) + 13/2 O2 (g) → 4 CO2 (g) + 5 H2O (cr,l)  | ΔrH°(298.15 K) = -2868.98 ± 0.59 kJ/mol | Pittam 1972 | 1.4 | 3287.1 | CH3CHCHCH3 (g, cis) + 6 O2 (g) → 4 CO2 (g) + 4 H2O (cr,l)  | ΔrH°(298.15 K) = -647.65 ± 0.29 kcal/mol | Prosen 1951, as quoted by Cox 1970 | 1.4 | 3215.5 | CH(CH3)3 (g) → CH3CH2CH2CH3 (g)  | ΔrH°(380 K) = 2.32 ± 0.20 kcal/mol | Pines 1945, 2nd Law | 1.3 | 3215.1 | CH(CH3)3 (g) → CH3CH2CH2CH3 (g)  | ΔrH°(298.15 K) = 8.54 ± 0.86 kJ/mol | Pittam 1972 | 1.3 | 3207.1 | CH3CH2CH2CH3 (g) + CH3CH3 (g) → 2 CH3CH2CH3 (g)  | ΔrH°(298.15 K) = 0.11 ± 1.14 kJ/mol | Pittam 1972 | 1.2 | 3281.1 | CH3CHCHCH3 (g, trans) + H2 (g) → CH3CH2CH2CH3 (g)  | ΔrH°(298.15 K) = -27.38 ± 0.10 kcal/mol | Kistiakowsky 1935a, as quoted by Cox 1970 |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of CH3CH2CH2CH3 (g) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 51.9 | 1-Butene | CH2CHCH2CH3 (g) | | 21.15 | 0.20 | ± 0.35 | kJ/mol | 56.1063 ± 0.0032 | 106-98-9*0 | 50.3 | trans-2-Butene | CH3CHCHCH3 (g, trans) | | 9.46 | -11.10 | ± 0.37 | kJ/mol | 56.1063 ± 0.0032 | 624-64-6*0 | 49.9 | cis-2-Butene | CH3CHCHCH3 (g, cis) | | 14.32 | -6.95 | ± 0.40 | kJ/mol | 56.1063 ± 0.0032 | 590-18-1*0 | 47.0 | iso-Butane | CH(CH3)3 (g) | | -105.88 | -134.48 | ± 0.28 | kJ/mol | 58.1222 ± 0.0033 | 75-28-5*0 | 47.0 | 1,3-Butadiene | CH2CHCHCH2 (g) | | 125.55 | 111.07 | ± 0.32 | kJ/mol | 54.0904 ± 0.0032 | 106-99-0*0 | 45.2 | Propane | CH3CH2CH3 (g) | | -82.72 | -105.00 | ± 0.16 | kJ/mol | 44.0956 ± 0.0025 | 74-98-6*0 | 42.5 | Carbonic acid | C(O)(OH)2 (aq, undissoc) | | | -698.991 | ± 0.030 | kJ/mol | 62.0248 ± 0.0012 | 463-79-6*1000 | 39.8 | Water | H2O (cr,l) | | -286.267 | -285.795 | ± 0.025 | kJ/mol | 18.01528 ± 0.00033 | 7732-18-5*500 | 39.8 | Water | H2O (l) | | | -285.795 | ± 0.025 | kJ/mol | 18.01528 ± 0.00033 | 7732-18-5*590 | 39.8 | Oxonium | [H3O]+ (aq) | | | -285.795 | ± 0.025 | kJ/mol | 19.02267 ± 0.00037 | 13968-08-6*800 |
|
Most Influential reactions involving CH3CH2CH2CH3 (g)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.661 | 3288.1 | CH3CHCHCH3 (g, cis) + H2 (g) → CH3CH2CH2CH3 (g)  | ΔrH°(298.15 K) = -28.33 ± 0.10 kcal/mol | Kistiakowsky 1935a, as quoted by Cox 1970 | 0.582 | 3281.1 | CH3CHCHCH3 (g, trans) + H2 (g) → CH3CH2CH2CH3 (g)  | ΔrH°(298.15 K) = -27.38 ± 0.10 kcal/mol | Kistiakowsky 1935a, as quoted by Cox 1970 | 0.500 | 3297.1 | CH2CHCH2CH3 (g) + H2 (g) → CH3CH2CH2CH3 (g)  | ΔrH°(298.15 K) = -30.10 ± 0.10 kcal/mol | Kistiakowsky 1935a, as quoted by Cox 1970 | 0.472 | 3319.1 | CH2CHCHCH2 (g) + 2 H2 (g) → CH3CH2CH2CH3 (g)  | ΔrH°(355.15 K) = -57.079 ± 0.10 kcal/mol | Kistiakowsky 1936, Prosen 1945c | 0.153 | 3242.6 | CH3CH2CHCH3 (g) + CH3CH2CH3 (g) → CH3CHCH3 (g) + CH3CH2CH2CH3 (g)  | ΔrH°(0 K) = -1.00 ± 2.00 kJ/mol | Klippenstein 2017 | 0.144 | 6609.6 | CH(CHCHCH) (g) + CH3CH2CH2CH3 (g) → CH2(CH2CH2CH2) (g) + CH2CHCHCH2 (g)  | ΔrH°(0 K) = -159.84 ± 2.00 kJ/mol | Klippenstein 2017 | 0.133 | 3328.1 | CH3CCCH3 (g) + 2 H2 (g) → CH3CH2CH2CH3 (g)  | ΔrH°(355.15 K) = -65.595 ± 0.300 kcal/mol | Conn 1939 | 0.130 | 3245.5 | [CH3CH2CHCH3]- (g) + CH3CH2CH3 (g) → CH3CH2CH2CH3 (g) + [CH3CH2CH2]- (g)  | ΔrH°(0 K) = 0.63 ± 0.8 kcal/mol | Ruscic W1RO | 0.130 | 3230.5 | [CH3CH2CH2CH2]- (g) + CH3CH2CH3 (g) → CH3CH2CH2CH3 (g) + [CH3CH2CH2]- (g)  | ΔrH°(0 K) = 0.33 ± 0.8 kcal/mol | Ruscic W1RO | 0.128 | 3443.1 | CH3CH2CH(CH3)2 (g) + CH3CH2CH3 (g) → CH(CH3)3 (g) + CH3CH2CH2CH3 (g)  | ΔrH°(298.15 K) = -0.48 ± 0.31 kcal/mol | Prosen 1945 | 0.117 | 3246.5 | [CH3CH2CHCH3]- (g) + CH3CH3 (g) → CH3CH2CH2CH3 (g) + [CH3CH2]- (g)  | ΔrH°(0 K) = 4.86 ± 0.8 kcal/mol | Ruscic W1RO | 0.117 | 3231.5 | [CH3CH2CH2CH2]- (g) + CH3CH3 (g) → CH3CH2CH2CH3 (g) + [CH3CH2]- (g)  | ΔrH°(0 K) = 4.56 ± 0.8 kcal/mol | Ruscic W1RO | 0.113 | 3215.2 | CH(CH3)3 (g) → CH3CH2CH2CH3 (g)  | ΔrH°(298.15 K) = 8.59 ± 0.79 kJ/mol | Prosen 1951 | 0.108 | 3224.9 | CH3CH2CH2CH2 (g) + CH3CH2CH3 (g) → CH3CH2CH2 (g) + CH3CH2CH2CH3 (g)  | ΔrH°(0 K) = -0.17 ± 2.00 kJ/mol | Klippenstein 2017 | 0.108 | 3223.1 | CH3CH2CH2CH2 (g) + CH3CH2CH3 (g) → CH3CH2CH2 (g) + CH3CH2CH2CH3 (g)  | ΔrG°(525 K) = -0.1 ± 2 kJ/mol | Seetula 1997, 3rd Law, est unc | 0.107 | 3205.1 | CH3CH2CH2CH3 (g) + 13/2 O2 (g) → 4 CO2 (g) + 5 H2O (cr,l)  | ΔrH°(298.15 K) = -2877.52 ± 0.63 kJ/mol | Pittam 1972 | 0.104 | 3244.5 | CH3CH2CH2CH3 (g) → [CH3CH2CHCH3]- (g) + H+ (g)  | ΔrH°(0 K) = 413.88 ± 0.90 kcal/mol | Ruscic W1RO | 0.104 | 3229.5 | CH3CH2CH2CH3 (g) → [CH3CH2CH2CH2]- (g) + H+ (g)  | ΔrH°(0 K) = 414.18 ± 0.90 kcal/mol | Ruscic W1RO | 0.101 | 3215.5 | CH(CH3)3 (g) → CH3CH2CH2CH3 (g)  | ΔrH°(380 K) = 2.32 ± 0.20 kcal/mol | Pines 1945, 2nd Law | 0.095 | 3215.1 | CH(CH3)3 (g) → CH3CH2CH2CH3 (g)  | ΔrH°(298.15 K) = 8.54 ± 0.86 kJ/mol | Pittam 1972 |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.122x of the Thermochemical Network, Argonne National Laboratory, Lemont, Illinois 2022; available at ATcT.anl.gov [DOI: 10.17038/CSE/1885922]
|
4
|
|
D. P. Zaleski, R. Sivaramakrishnan, H. R. Weller, N. A Seifert, D. H. Bross, B. Ruscic, K. B. Moore III, S. N. Elliott, A. V. Copan, L. B. Harding, S. J. Klippenstein, R. W. Field, and K. Prozument,
Substitution Reactions in the Pyrolysis of Acetone Revealed through a Modeling, Experiment, Theory Paradigm.
J. Am. Chem. Soc. 143, 3124-3152 (2021)
[DOI: 10.1021/jacs.0c11677]
|
5
|
|
Y. Ren, L. Zhou, A. Mellouki, V. Daƫle, M. Idir, S. S. Brown, B. Ruscic, Robert S. Paton, M. R. McGillen, and A. R. Ravishankara,
Reactions of NO3 with Aromatic Aldehydes: Gas-Phase Kinetics and Insights into the Mechanism of the Reaction.
Atmos. Chem. Phys. 21, 13537-13551 (2021)
[DOI: 10.5194/acp2021-228]
|
6
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
7
|
|
B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019)
[DOI: 10.1016/B978-0-444-64087-1.00001-2]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6,7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|