Selected ATcT [1, 2] enthalpy of formation based on version 1.122x of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122v [4] to include species relevant to the study of bond dissociation enthalpies of representative aromatic aldehydes [5].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
Hydrogen atomH (g)[H]216.034217.998± 0.000kJ/mol1.007940 ±
0.000070
12385-13-6*0

Representative Geometry of H (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of H (g)

The 5 contributors listed below account for 91.3% of the provenance of ΔfH° of H (g).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
59.759.10 H2 (g) → 2 H (g) ΔrH°(0 K) = 36118.06962 ± 0.00074 cm-1Liu 2012, note unc
14.959.15 H2 (g) → 2 H (g) ΔrH°(0 K) = 36118.0695 ± 0.0020 cm-1Piszczatowski 2009, note unc
6.275.1 H (g) → H+ (g) ΔrH°(0 K) = 109678.77174307 ± 0.00000020 cm-1Mohr 2016, Sprecher 2010, note unc
6.275.2 H (g) → H+ (g) ΔrH°(0 K) = 109678.7717426 ± 0.0000020 cm-1Liu 2009, note unc
4.163.13 H2 (g) → [H2]+ (g) ΔrH°(0 K) = 124417.49113 ± 0.00074 cm-1Liu 2012, note unc

Top 10 species with enthalpies of formation correlated to the ΔfH° of H (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
36.1 HydrideH- (g)[H-]143.264145.228± 0.000kJ/mol1.008489 ±
0.000070
12184-88-2*0
32.7 HydronH+ (g)[H+]1528.0841530.047± 0.000kJ/mol1.007391 ±
0.000070
12408-02-5*0
28.2 Dihydrogen cation[H2]+ (g)[H][H+]1488.3641488.480± 0.000kJ/mol2.01533 ±
0.00014
12184-90-6*0
17.0 Dihydrogen cation[H2]+ (g, para)[H][H+]1488.3641488.480± 0.000kJ/mol2.01533 ±
0.00014
12184-90-6*2
16.6 Deuterium hydrideHD (g)[H][2H]0.3280.319± 0.000kJ/mol3.022042 ±
0.000070
13983-20-5*0
16.0 DihydrogenH2 (g, ortho)[H][H]1.4170.019± 0.000kJ/mol2.01588 ±
0.00014
1333-74-0*1
15.3 Deuterium hydride cation[HD]+ (g)[H][2H+]1490.4981490.587± 0.000kJ/mol3.021493 ±
0.000070
12181-16-7*0
14.9 Dihydrogen cation[H2]+ (g, ortho)[H][H+]1489.0601488.480± 0.000kJ/mol2.01533 ±
0.00014
12184-90-6*1
12.5 DihydrogenH2 (g, para)[H][H]-0.000-0.058± 0.000kJ/mol2.01588 ±
0.00014
1333-74-0*2
1.7 Deuterium atom cationD+ (g)[2H+]1532.2101534.123± 0.000kJ/mol2.01355319809 ±
0.00000000040
14464-47-2*0

Most Influential reactions involving H (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
1.0007741.1 H (g) → H (ad, Pt(111) atop) ΔrH°(0 K) = -2.57 ± 0.20 eVKandoi 2006, Greeley 2002, Greeley 2004, est unc
1.0007490.6 NeH (g) → Ne (g) H (g) ΔrH°(0 K) = 3.77 ± 2 cm-1Harris 2014, est unc
0.99676.6 H- (g) → H (g) ΔrH°(0 K) = 6083.064145 ± 0.000030 cm-1Drake 1999, Andersen 1999, Feller 2016
0.9942062.1 [CH]+ (g) → C+ (g) H (g) ΔrH°(0 K) = 32946.7 ± 2.2 cm-1Hechtfischer 2002, note unc
0.9572009.1 CH4 (g) → [CH3]+ (g) H (g) ΔrH°(0 K) = 14.32271 ± 0.00013 eVChang 2017
0.94274.1 [H2]- (g) → H (g) H- (g) ΔrH°(0 K) = 8819.364 ± 100 cm-1Srivastava 2012, est unc
0.9334009.1 CH3OOH (g) → [CH2OOH]+ (g) H (g) ΔrH°(0 K) = 11.647 ± 0.005 eVCovert 2018
0.894169.1 [OH]+ (g) → O+ (g) H (g) ΔrH°(0 K) = 40412.0 ± 2.2 cm-1Moselhy 1975, note unc
0.8895471.1 CHFO (g) → FCO (g) H (g) ΔrH°(0 K) = 34950 ± 20 cm-1Maul 1999
0.8722256.5 HCCH (g) → [CCH]+ (g) H (g) ΔrH°(0 K) = 17.3576 ± 0.0010 eVJarvis 1999, Weitzel 2001
0.807699.1 [HCl]+ (g) → H (g) Cl+ (g) ΔrH°(0 K) = 37537.0 ± 0.5 cm-1Michel 2002, note HCl
0.7972853.1 CH3CH2CH3 (g) → [CH3CHCH3]+ (g) H (g) ΔrH°(0 K) = 11.624 ± 0.002 eVStevens 2010
0.7751438.1 NH4 (g) → NH3 (g) H (g) ΔrH°(0 K) = -0.130 ± 0.005 eVAue 1972
0.6782063.1 [CH]- (g) → C- (g) H (g) ΔrH°(0 K) = 78.83 ± 0.06 kcal/molFeller 2016, note unc2
0.6412251.1 HCCH (g) → CCH (g) H (g) ΔrH°(0 K) = 46074 ± 8 cm-1Mordaunt 1994
0.6122601.1 CH3OH (g) → [CH2OH]+ (g) H (g) ΔrH°(0 K) = 11.6454 ± 0.0017 eVBorkar 2011
0.609158.3 H2O (g) → OH (g) H (g) ΔrH°(0 K) = 41145.92 ± 0.12 cm-1Boyarkin 2013
0.6051799.1 HNNN (g) → H (g) NNN (g) ΔrH°(0 K) = 30970 ± 50 cm-1Cook 1999
0.6032287.1 CH3NH2 (g) → [CH2NH2]+ (g) H (g) ΔrH°(0 K) = 10.228 ± 0.008 eVBodi 2006
0.5981650.1 NH2OH (g, trans) → [NH2O]+ (g) H (g) ΔrH°(0 K) = 12.39 ± 0.01 eVKutina 1982


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122x of the Thermochemical Network, Argonne National Laboratory, Lemont, Illinois 2022; available at ATcT.anl.gov
[DOI: 10.17038/CSE/1885922]
4   D. P. Zaleski, R. Sivaramakrishnan, H. R. Weller, N. A Seifert, D. H. Bross, B. Ruscic, K. B. Moore III, S. N. Elliott, A. V. Copan, L. B. Harding, S. J. Klippenstein, R. W. Field, and K. Prozument,
Substitution Reactions in the Pyrolysis of Acetone Revealed through a Modeling, Experiment, Theory Paradigm.
J. Am. Chem. Soc. 143, 3124-3152 (2021) [DOI: 10.1021/jacs.0c11677]
5   Y. Ren, L. Zhou, A. Mellouki, V. DaĆ«le, M. Idir, S. S. Brown, B. Ruscic, Robert S. Paton, M. R. McGillen, and A. R. Ravishankara,
Reactions of NO3 with Aromatic Aldehydes: Gas-Phase Kinetics and Insights into the Mechanism of the Reaction.
Atmos. Chem. Phys. 21, 13537-13551 (2021) [DOI: 10.5194/acp2021-228]
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
7   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6,7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.