Selected ATcT [1, 2] enthalpy of formation based on version 1.122x of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122v [4] to include species relevant to the study of bond dissociation enthalpies of representative aromatic aldehydes [5].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
Chlorine atom cationCl+ (g)[Cl+]1370.8071372.603± 0.0021kJ/mol35.45215 ±
0.00090
24203-47-2*0

Representative Geometry of Cl+ (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of Cl+ (g)

The 5 contributors listed below account for 96.3% of the provenance of ΔfH° of Cl+ (g).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
35.6677.1 Cl (g) → Cl+ (g) ΔrH°(0 K) = 104591.01 ± 0.14 cm-1Yang 2015, est unc
24.4668.7 Cl2 (g) → 2 Cl (g) ΔrH°(0 K) = 19999.12 ± 0.2 cm-1Douglas 1975, est unc
17.4677.5 Cl (g) → Cl+ (g) ΔrH°(0 K) = 104590.9 ± 0.2 cm-1Biemont 1999, note unc
10.8668.6 Cl2 (g) → 2 Cl (g) ΔrH°(0 K) = 19999.09 ± 0.3 cm-1LeRoy 1971, note Cl2, LeRoy 1970d, LeRoy 1970b
7.7677.2 Cl (g) → Cl+ (g) ΔrH°(0 K) = 104591.0 ± 0.3 cm-1Moore 1970, Radziemski 1969

Top 10 species with enthalpies of formation correlated to the ΔfH° of Cl+ (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
60.3 Chlorine atomCl (g)[Cl]119.621121.302± 0.0011kJ/mol35.45270 ±
0.00090
22537-15-1*0
60.3 Chlorine atomCl (g, 2P3/2)[Cl]119.621121.228± 0.0011kJ/mol35.45270 ±
0.00090
22537-15-1*1
60.3 Chlorine atomCl (g, 2P1/2)[Cl]130.176131.783± 0.0011kJ/mol35.45270 ±
0.00090
22537-15-1*2
25.0 Chloroniumyl ion[HCl]+ (g)[ClH+]1137.7981137.732± 0.0051kJ/mol36.46009 ±
0.00090
12258-94-5*0
21.9 ChlorideCl- (g)[Cl-]-228.953-227.346± 0.0021kJ/mol35.45325 ±
0.00090
16887-00-6*0
13.4 Chlorine atom dication[Cl]+2 (g)[Cl++]3668.4743670.081± 0.013kJ/mol35.45160 ±
0.00090
15723-23-6*0
12.9 Hydrogen chlorideHCl (g)Cl-91.988-92.172± 0.0062kJ/mol36.46064 ±
0.00090
7647-01-0*0
4.8 Iodine monochlorideICl (g)ICl19.02417.391± 0.013kJ/mol162.35717 ±
0.00090
7790-99-0*0
3.0 Hydrogen chlorideHCl (aq)Cl-166.990± 0.023kJ/mol36.46064 ±
0.00090
7647-01-0*800
3.0 ChlorideCl- (aq)[Cl-]-166.990± 0.023kJ/mol35.45325 ±
0.00090
16887-00-6*800

Most Influential reactions involving Cl+ (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.961678.1 Cl+ (g) → [Cl]+2 (g) ΔrH°(0 K) = 192070.0 ± 1.0 cm-1NIST Atomic Web, Radziemski 1974
0.807699.1 [HCl]+ (g) → H (g) Cl+ (g) ΔrH°(0 K) = 37537.0 ± 0.5 cm-1Michel 2002, note HCl
0.574677.1 Cl (g) → Cl+ (g) ΔrH°(0 K) = 104591.01 ± 0.14 cm-1Yang 2015, est unc
0.333753.1 [ClF]+ (g) → Cl+ (g) F (g) ΔrH°(0 K) = 67.42 ± 0.2 kcal/molVassilakis 2014, est unc
0.281677.5 Cl (g) → Cl+ (g) ΔrH°(0 K) = 104590.9 ± 0.2 cm-1Biemont 1999, note unc
0.125677.2 Cl (g) → Cl+ (g) ΔrH°(0 K) = 104591.0 ± 0.3 cm-1Moore 1970, Radziemski 1969
0.060675.1 Cl2 (g) → Cl+ (g) Cl- (g) ΔrH°(0 K) = 95451.6 ± 1.1 cm-1Mollet 2010
0.038678.2 Cl+ (g) → [Cl]+2 (g) ΔrH°(0 K) = 192070 ± 5 cm-1Moore 1970, Edlen 1964, Kaufman 1969, est unc
0.0092498.1 ClCN (g) → Cl+ (g) CN (g) ΔrH°(0 K) = 17.324 ± 0.049 eVDibeler 1967b, AE corr, est unc
0.008699.2 [HCl]+ (g) → H (g) Cl+ (g) ΔrH°(0 K) = 37536.8 ± 5 cm-1Michel 2001, note HCl
0.002675.2 Cl2 (g) → Cl+ (g) Cl- (g) ΔrH°(0 K) = 95447 ± 5 cm-1Li 2007
0.000677.4 Cl (g) → Cl+ (g) ΔrH°(0 K) = 104588 ± 10 cm-1Huffman 1967
0.000751.1 ClF (g) → Cl+ (g) F- (g) ΔrH°(0 K) = 12.13 ± 0.05 (×1.091) eVDibeler 1970a, est unc
0.000678.4 Cl+ (g) → [Cl]+2 (g) ΔrH°(0 K) = 23.788 ± 0.040 eVRuscic W1RO
0.000700.1 HCl (g) → H (g) Cl+ (g) ΔrH°(0 K) = 17.37 ± 0.02 (×1.509) eVKrauss 1968, AE corr, note unc3
0.000678.3 Cl+ (g) → [Cl]+2 (g) ΔrH°(0 K) = 23.775 ± 0.073 eVRuscic G4
0.000677.6 Cl (g) → Cl+ (g) ΔrH°(0 K) = 12.97 ± 0.02 eVde Leeuw 1978
0.000677.9 Cl (g) → Cl+ (g) ΔrH°(0 K) = 12.963 ± 0.040 eVParthiban 2001, Ruscic W1RO
0.000677.10 Cl (g) → Cl+ (g) ΔrH°(0 K) = 12.961 ± 0.040 eVParthiban 2001
0.000677.8 Cl (g) → Cl+ (g) ΔrH°(0 K) = 12.914 ± 0.073 eVRuscic G4


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122x of the Thermochemical Network, Argonne National Laboratory, Lemont, Illinois 2022; available at ATcT.anl.gov
[DOI: 10.17038/CSE/1885922]
4   D. P. Zaleski, R. Sivaramakrishnan, H. R. Weller, N. A Seifert, D. H. Bross, B. Ruscic, K. B. Moore III, S. N. Elliott, A. V. Copan, L. B. Harding, S. J. Klippenstein, R. W. Field, and K. Prozument,
Substitution Reactions in the Pyrolysis of Acetone Revealed through a Modeling, Experiment, Theory Paradigm.
J. Am. Chem. Soc. 143, 3124-3152 (2021) [DOI: 10.1021/jacs.0c11677]
5   Y. Ren, L. Zhou, A. Mellouki, V. DaĆ«le, M. Idir, S. S. Brown, B. Ruscic, Robert S. Paton, M. R. McGillen, and A. R. Ravishankara,
Reactions of NO3 with Aromatic Aldehydes: Gas-Phase Kinetics and Insights into the Mechanism of the Reaction.
Atmos. Chem. Phys. 21, 13537-13551 (2021) [DOI: 10.5194/acp2021-228]
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
7   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6,7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.