Selected ATcT [1, 2] enthalpy of formation based on version 1.122x of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122v [4] to include species relevant to the study of bond dissociation enthalpies of representative aromatic aldehydes [5].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
Oxygen atom cationO+ (g)[O+]1560.7861562.643± 0.0021kJ/mol15.99885 ±
0.00030
14581-93-2*0

Representative Geometry of O+ (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of O+ (g)

The 5 contributors listed below account for 96.7% of the provenance of ΔfH° of O+ (g).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
42.51.4 O2 (g) → 2 O (g) ΔrH°(0 K) = 41269.2 ± 0.5 cm-1Lewis 1985, note O2b
24.022.2 O2 (g) → O+ (g) O- (g) ΔrH°(0 K) = 139321.2 ± 0.7 cm-1Martin 1997, note O2c
13.11.5 O2 (g) → 2 O (g) ΔrH°(0 K) = 41269.6 ± 0.9 cm-1Gibson 1991, note O2b
8.71.6 O2 (g) → 2 O (g) ΔrH°(0 K) = 41268.6 ± 1.1 cm-1Cosby 1992, note O2b
8.215.1 O (g) → O+ (g) ΔrH°(0 K) = 109837.02 ± 0.06 cm-1Eriksson 1968, Moore 1970, NIST Atomic Web

Top 10 species with enthalpies of formation correlated to the ΔfH° of O+ (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
94.3 Oxygen atomO (g)[O]246.844249.229± 0.0021kJ/mol15.99940 ±
0.00030
17778-80-2*0
94.3 Oxygen atomO (g, triplet)[O]246.844249.229± 0.0021kJ/mol15.99940 ±
0.00030
17778-80-2*1
94.3 Oxygen atom anionO- (g)[O-]105.868108.097± 0.0021kJ/mol15.99995 ±
0.00030
14337-01-0*0
94.3 Oxygen atomO (g, singlet)[O]436.665438.523± 0.0021kJ/mol15.99940 ±
0.00030
17778-80-2*2
17.7 Oxygen atom dication[O]+2 (g)[O++]4949.4584953.000± 0.013kJ/mol15.99830 ±
0.00030
14127-63-0*0
12.6 Oxygen atom trication[O]+3 (g)[O+3]10249.92910252.880± 0.018kJ/mol15.99775 ±
0.00030
14127-64-1*0
8.9 Oxygen atom tetracation[O]+4 (g)[O+4]17719.20717721.064± 0.025kJ/mol15.99721 ±
0.00030
14127-65-2*0
7.8 Oxidanylium[OH]+ (g)[OH+]1293.3611293.391± 0.025kJ/mol17.00679 ±
0.00031
12259-29-9*0
5.5 ChlorooxidanylClO (g)Cl=O101.124101.716± 0.035kJ/mol51.45210 ±
0.00095
14989-30-1*0
5.5 Nitrogen dioxideONO (g)O=[N]=O36.88134.074± 0.067kJ/mol46.00554 ±
0.00060
10102-44-0*0

Most Influential reactions involving O+ (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.99924.1 O+ (g) → [O]+2 (g) ΔrH°(0 K) = 283270.9 ± 1 cm-1NIST Atomic Web, est unc
0.99315.1 O (g) → O+ (g) ΔrH°(0 K) = 109837.02 ± 0.06 cm-1Eriksson 1968, Moore 1970, NIST Atomic Web
0.894169.1 [OH]+ (g) → O+ (g) H (g) ΔrH°(0 K) = 40412.0 ± 2.2 cm-1Moselhy 1975, note unc
0.24722.2 O2 (g) → O+ (g) O- (g) ΔrH°(0 K) = 139321.2 ± 0.7 cm-1Martin 1997, note O2c
0.057248.2 [(HOH)O]+ (g) → H2O (g) O+ (g) ΔrH°(0 K) = 39.75 ± 3.20 kcal/molRuscic G4
0.052248.4 [(HOH)O]+ (g) → H2O (g) O+ (g) ΔrH°(0 K) = 36.99 ± 3.20 (×1.044) kcal/molRuscic CBS-n
0.0511895.7 CO2 (g) → CO (g) O+ (g) ΔrH°(0 K) = 19.0701 ± 0.0010 (×1.114) eVLiu 2003, note unc
0.049248.1 [(HOH)O]+ (g) → H2O (g) O+ (g) ΔrH°(0 K) = 39.90 ± 3.44 kcal/molRuscic G3X
0.031248.3 [(HOH)O]+ (g) → H2O (g) O+ (g) ΔrH°(0 K) = 42.02 ± 4.32 kcal/molRuscic CBS-n
0.0171217.2 [NNN]+ (g) [CO]+ (g) O+ (g) → [CO2]+ (g) [N2]+ (g) N+ (g) ΔrH°(0 K) = -1.70 ± 1.60 kcal/molRuscic G4
0.0171217.3 [NNN]+ (g) [CO]+ (g) O+ (g) → [CO2]+ (g) [N2]+ (g) N+ (g) ΔrH°(0 K) = -2.15 ± 1.60 kcal/molRuscic CBS-n
0.0171217.4 [NNN]+ (g) [CO]+ (g) O+ (g) → [CO2]+ (g) [N2]+ (g) N+ (g) ΔrH°(0 K) = 0.11 ± 1.50 (×1.067) kcal/molRuscic W1RO
0.0151217.1 [NNN]+ (g) [CO]+ (g) O+ (g) → [CO2]+ (g) [N2]+ (g) N+ (g) ΔrH°(0 K) = -1.49 ± 1.72 kcal/molRuscic G3X
0.00321.6 O2 (g) → O+ (g) O (g) ΔrH°(0 K) = 151100.4 ± 2.6 (×2.181) cm-1note O2+f, Kong 1996, Cosby 1980, Pernot 1979
0.00321.4 O2 (g) → O+ (g) O (g) ΔrH°(0 K) = 151111 ± 6 cm-1Cosby 1992, note O2+e, Yoshino 1968, Cosby 1980, Pernot 1979
0.0021895.2 CO2 (g) → CO (g) O+ (g) ΔrH°(0 K) = 19.071 ± 0.005 eVEland 1977, est unc
0.0021895.3 CO2 (g) → CO (g) O+ (g) ΔrH°(0 K) = 19.067 ± 0.005 eVKronebusch 1976, est unc
0.00121.1 O2 (g) → O+ (g) O (g) ΔrH°(0 K) = 151100.2 ± 9.2 cm-1Albritton 1978, note O2+b, Yoshino 1968, Tadjeddine 1978, Albritton 1977
0.00121.5 O2 (g) → O+ (g) O (g) ΔrH°(0 K) = 151105.9 ± 9.2 cm-1note O2+f, Kong 1996, Tadjeddine 1978, Albritton 1977
0.00122.1 O2 (g) → O+ (g) O- (g) ΔrH°(0 K) = 139316.6 ± 9.7 cm-1Dehmer 1975, note O2+


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122x of the Thermochemical Network, Argonne National Laboratory, Lemont, Illinois 2022; available at ATcT.anl.gov
[DOI: 10.17038/CSE/1885922]
4   D. P. Zaleski, R. Sivaramakrishnan, H. R. Weller, N. A Seifert, D. H. Bross, B. Ruscic, K. B. Moore III, S. N. Elliott, A. V. Copan, L. B. Harding, S. J. Klippenstein, R. W. Field, and K. Prozument,
Substitution Reactions in the Pyrolysis of Acetone Revealed through a Modeling, Experiment, Theory Paradigm.
J. Am. Chem. Soc. 143, 3124-3152 (2021) [DOI: 10.1021/jacs.0c11677]
5   Y. Ren, L. Zhou, A. Mellouki, V. DaĆ«le, M. Idir, S. S. Brown, B. Ruscic, Robert S. Paton, M. R. McGillen, and A. R. Ravishankara,
Reactions of NO3 with Aromatic Aldehydes: Gas-Phase Kinetics and Insights into the Mechanism of the Reaction.
Atmos. Chem. Phys. 21, 13537-13551 (2021) [DOI: 10.5194/acp2021-228]
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
7   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6,7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.