Selected ATcT [1, 2] enthalpy of formation based on version 1.122x of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122v [4] to include species relevant to the study of bond dissociation enthalpies of representative aromatic aldehydes [5].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
Ethynylium[CCH]+ (g)C#[C+]1687.601690.94± 0.15kJ/mol25.0288 ±
0.0016
16456-59-0*0

Representative Geometry of [CCH]+ (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of [CCH]+ (g)

The 20 contributors listed below account only for 49.8% of the provenance of ΔfH° of [CCH]+ (g).
A total of 466 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
30.92256.5 HCCH (g) → [CCH]+ (g) H (g) ΔrH°(0 K) = 17.3576 ± 0.0010 eVJarvis 1999, Weitzel 2001
3.42256.4 HCCH (g) → [CCH]+ (g) H (g) ΔrH°(0 K) = 17.360 ± 0.003 eVWeitzel 1994
2.11987.1 H2 (g) C (graphite) → CH4 (g) ΔrG°(1165 K) = 37.521 ± 0.068 kJ/molSmith 1946, note COf, 3rd Law
1.51891.2 CO (g) → C+ (g) O (g) ΔrH°(0 K) = 22.3713 ± 0.0015 eVNg 2007
1.1120.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
0.92139.1 CH2CH2 (g) + 3 O2 (g) → 2 CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -1411.18 ± 0.30 kJ/molRossini 1937
0.92205.7 HCCH (g) → 2 C (g) + 2 H (g) ΔrH°(0 K) = 1626.04 ± 0.56 kJ/molHarding 2008
0.72223.1 CH2CH2 (g) → [HCCH]+ (g) H2 (g) ΔrH°(0 K) = 13.135 ± 0.005 (×1.325) eVMalow 1999, est unc
0.72223.2 CH2CH2 (g) → [HCCH]+ (g) H2 (g) ΔrH°(0 K) = 13.135 ± 0.005 (×1.325) eVMahnert 1996
0.72204.13 HCCH (g) → 2 C (g) + 2 H (g) ΔrH°(0 K) = 388.71 ± 0.15 kcal/molKarton 2007a
0.72251.1 HCCH (g) → CCH (g) H (g) ΔrH°(0 K) = 46074 ± 8 cm-1Mordaunt 1994
0.71923.7 HCCH (g) → 2 H (g) C2 (g) ΔrH°(0 K) = 244.65 ± 0.15 kcal/molKarton 2007a
0.71899.5 C (graphite) CO2 (g) → 2 CO (g) ΔrG°(1165 K) = -33.545 ± 0.058 kJ/molSmith 1946, note COf, 3rd Law
0.61843.7 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.464 ± 0.024 kJ/molHawtin 1966, note CO2e
0.62241.7 CCH (g) → 2 C (g) H (g) ΔrH°(0 K) = 1075.25 ± 0.56 kJ/molHarding 2008
0.62221.6 HCCH (g) H2 (g) → CH2CH2 (g) ΔrH°(0 K) = -167.71 ± 0.70 kJ/molHarding 2007
0.52205.5 HCCH (g) → 2 C (g) + 2 H (g) ΔrH°(0 K) = 1626.04 ± 0.70 kJ/molHarding 2008, Ferguson 2013
0.52205.4 HCCH (g) → 2 C (g) + 2 H (g) ΔrH°(0 K) = 1626.21 ± 0.70 kJ/molBomble 2006
0.52205.11 HCCH (g) → 2 C (g) + 2 H (g) ΔrH°(0 K) = 1626.15 ± 0.70 kJ/molHarding 2007
0.52220.11 HCCH (g) + 2 H2 (g) → CH3CH3 (g) ΔrH°(0 K) = -71.01 ± 0.20 kcal/molKarton 2007

Top 10 species with enthalpies of formation correlated to the ΔfH° of [CCH]+ (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
80.0 AcetyleneHCCH (g)C#C228.84228.28± 0.12kJ/mol26.0373 ±
0.0016
74-86-2*0
80.0 Acetylene cation[HCCH]+ (g)C#[CH+]1328.861328.19± 0.12kJ/mol26.0367 ±
0.0016
25641-79-6*0
66.3 EthynylCCH (g)C#[C]563.89568.00± 0.14kJ/mol25.0293 ±
0.0016
2122-48-7*0
50.9 Ethynide[CCH]- (g)C#[C-]277.44280.85± 0.18kJ/mol25.0299 ±
0.0016
29075-95-4*0
48.9 CarbonC (g, triplet)[C]711.411716.896± 0.044kJ/mol12.01070 ±
0.00080
7440-44-0*1
48.9 CarbonC (g)[C]711.411716.896± 0.044kJ/mol12.01070 ±
0.00080
7440-44-0*0
48.9 CarbonC (g, singlet)[C]833.342838.488± 0.044kJ/mol12.01070 ±
0.00080
7440-44-0*2
48.9 CarbonC (g, quintuplet)[C]1114.9741120.120± 0.044kJ/mol12.01070 ±
0.00080
7440-44-0*3
48.9 Carbon cationC+ (g)[C+]1797.8641803.462± 0.044kJ/mol12.01015 ±
0.00080
14067-05-1*0
48.8 Carbon dication[C]+2 (g)[C++]4150.4804155.627± 0.044kJ/mol12.00960 ±
0.00080
16092-61-8*0

Most Influential reactions involving [CCH]+ (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.8722256.5 HCCH (g) → [CCH]+ (g) H (g) ΔrH°(0 K) = 17.3576 ± 0.0010 eVJarvis 1999, Weitzel 2001
0.1393184.5 [CCCH]+ (g) C2 (g) → CCC (g) [CCH]+ (g) ΔrH°(0 K) = 19.65 ± 0.8 kcal/molRuscic W1RO
0.0972256.4 HCCH (g) → [CCH]+ (g) H (g) ΔrH°(0 K) = 17.360 ± 0.003 eVWeitzel 1994
0.0256387.7 HCCCN (g) → [CCH]+ (g) CN (g) ΔrH°(0 K) = 18.195 ± 0.040 eVRuscic W1RO
0.0153184.3 [CCCH]+ (g) C2 (g) → CCC (g) [CCH]+ (g) ΔrH°(0 K) = 22.46 ± 1.3 (×1.874) kcal/molRuscic CBS-n
0.0142242.1 CCH (g) → [CCH]+ (g) ΔrH°(0 K) = 11.641 ± 0.010 eVGans 2017, note unc2
0.0142242.11 CCH (g) → [CCH]+ (g) ΔrH°(0 K) = 11.652 ± 0.010 eVLau 2005
0.0133184.4 [CCCH]+ (g) C2 (g) → CCC (g) [CCH]+ (g) ΔrH°(0 K) = 22.60 ± 1.0 (×2.538) kcal/molRuscic CBS-n
0.0113184.1 [CCCH]+ (g) C2 (g) → CCC (g) [CCH]+ (g) ΔrH°(0 K) = 22.84 ± 1.2 (×2.327) kcal/molRuscic G3X
0.0113184.2 [CCCH]+ (g) C2 (g) → CCC (g) [CCH]+ (g) ΔrH°(0 K) = 22.89 ± 1.0 (×2.828) kcal/molRuscic G4
0.0082256.1 HCCH (g) → [CCH]+ (g) H (g) ΔrH°(0 K) = 17.36 ± 0.01 eVDibeler 1973a
0.0086387.1 HCCCN (g) → [CCH]+ (g) CN (g) ΔrH°(0 K) = 18.23 ± 0.04 (×1.756) eVOkabe 1973
0.0076387.4 HCCCN (g) → [CCH]+ (g) CN (g) ΔrH°(0 K) = 18.228 ± 0.073 eVRuscic G4
0.0056387.6 HCCCN (g) → [CCH]+ (g) CN (g) ΔrH°(0 K) = 18.244 ± 0.075 (×1.114) eVRuscic CBS-n
0.0046387.3 HCCCN (g) → [CCH]+ (g) CN (g) ΔrH°(0 K) = 18.217 ± 0.093 eVRuscic G3X
0.0046387.5 HCCCN (g) → [CCH]+ (g) CN (g) ΔrH°(0 K) = 18.250 ± 0.099 eVRuscic CBS-n
0.0002242.10 CCH (g) → [CCH]+ (g) ΔrH°(0 K) = 11.670 ± 0.040 eVRuscic W1RO
0.0002256.6 HCCH (g) → [CCH]+ (g) H (g) ΔrH°(0 K) = 17.35 ± 0.04 eVServais 1995
0.0002245.8 [CCH]+ (g) → 2 C (g) H (g) ΔrH°(0 K) = -12.16 ± 1.50 kcal/molRuscic W1RO
0.0002245.4 [CCH]+ (g) → 2 C (g) H (g) ΔrH°(0 K) = -12.41 ± 1.60 kcal/molRuscic G4


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122x of the Thermochemical Network, Argonne National Laboratory, Lemont, Illinois 2022; available at ATcT.anl.gov
[DOI: 10.17038/CSE/1885922]
4   D. P. Zaleski, R. Sivaramakrishnan, H. R. Weller, N. A Seifert, D. H. Bross, B. Ruscic, K. B. Moore III, S. N. Elliott, A. V. Copan, L. B. Harding, S. J. Klippenstein, R. W. Field, and K. Prozument,
Substitution Reactions in the Pyrolysis of Acetone Revealed through a Modeling, Experiment, Theory Paradigm.
J. Am. Chem. Soc. 143, 3124-3152 (2021) [DOI: 10.1021/jacs.0c11677]
5   Y. Ren, L. Zhou, A. Mellouki, V. DaĆ«le, M. Idir, S. S. Brown, B. Ruscic, Robert S. Paton, M. R. McGillen, and A. R. Ravishankara,
Reactions of NO3 with Aromatic Aldehydes: Gas-Phase Kinetics and Insights into the Mechanism of the Reaction.
Atmos. Chem. Phys. 21, 13537-13551 (2021) [DOI: 10.5194/acp2021-228]
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
7   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6,7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.