Selected ATcT [1, 2] enthalpy of formation based on version 1.122r of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122q [4, 5] to include a non-rigid rotor anharmonic oscillator (NRRAO) partition function for hydroxymethyl. [6], as well as data on 42 additional species, some of which are related to soot formation mechanisms.

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
Hydrogen bromideHBr (g)Br-27.60-35.45± 0.14kJ/mol80.9119 ±
0.0010
10035-10-6*0

Representative Geometry of HBr (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of HBr (g)

The 9 contributors listed below account for 53.0% of the provenance of ΔfH° of HBr (g).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
22.51009.1 [HBr]+ (g) → H (g) Br+ (g) ΔrH°(0 K) = 31394.5 ± 20 (×1.044) cm-1Haugh 1971, Norling 1935
11.8951.2 Br2 (cr,l) → Br2 (g) ΔrH°(298.15 K) = 7.386 ± 0.027 kcal/molHildenbrand 1958
3.51009.3 [HBr]+ (g) → H (g) Br+ (g) ΔrH°(0 K) = 31358 ± 15 (×3.513) cm-1Penno 1998, Norling 1935, est unc
3.1999.1 Cl2 (g) + 2 Br- (aq) → Br2 (cr,l) + 2 Cl- (aq) ΔrH°(298.15 K) = -91.29 ± 0.40 (×3.83) kJ/molJohnson 1963, as quoted by CODATA Key Vals
3.1999.2 Cl2 (g) + 2 Br- (aq) → Br2 (cr,l) + 2 Cl- (aq) ΔrH°(298.15 K) = -91.29 ± 0.80 (×1.915) kJ/molSunner 1964, as quoted by CODATA Key Vals
2.8979.1 1/2 H2 (g) + 1/2 Br2 (cr,l) → HBr (aq) ΔrG°(298.15 K) = -102.81 ± 0.80 kJ/molJones 1934, as quoted by CODATA Key Vals
2.0970.12 HBr (g) → H (g) Br (g) ΔrH°(0 K) = 86.47 ± 0.2 kcal/molFeller 2008
2.0971.6 HBr (g) Cl (g) → HCl (g) Br (g) ΔrH°(0 K) = -15.68 ± 0.2 kcal/molFeller 2008
2.01095.1 HI (g) Br (g) → HBr (g) I (g) ΔrH°(0 K) = -16.14 ± 0.2 kcal/molFeller 2008

Top 10 species with enthalpies of formation correlated to the ΔfH° of HBr (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
99.9 Bromoniumyl[HBr]+ (g)[BrH+]1098.071090.22± 0.14kJ/mol80.9114 ±
0.0010
12258-64-9*0
94.0 Hydrogen bromideHBr (aq, 2570 H2O)Br-120.34± 0.15kJ/mol80.9119 ±
0.0010
10035-10-6*952
93.9 Hydrogen bromideHBr (aq, 2000 H2O)Br-120.30± 0.15kJ/mol80.9119 ±
0.0010
10035-10-6*841
93.9 Hydrogen bromideHBr (aq, 3000 H2O)Br-120.35± 0.15kJ/mol80.9119 ±
0.0010
10035-10-6*842
93.9 BromideBr- (aq)[Br-]-120.59± 0.15kJ/mol79.90455 ±
0.00100
24959-67-9*800
93.9 Hydrogen bromideHBr (aq)Br-120.59± 0.15kJ/mol80.9119 ±
0.0010
10035-10-6*800
93.9 Hydrogen bromideHBr (aq, 1000 H2O)Br-120.20± 0.15kJ/mol80.9119 ±
0.0010
10035-10-6*839
93.8 Hydrogen bromideHBr (aq, 5000 H2O)Br-120.40± 0.15kJ/mol80.9119 ±
0.0010
10035-10-6*844
93.8 Hydrogen bromideHBr (aq, 600 H2O)Br-120.11± 0.15kJ/mol80.9119 ±
0.0010
10035-10-6*834
85.6 Ammonium bromide(NH4)Br (cr)[NH4+].[Br-]-253.35-269.93± 0.16kJ/mol97.9425 ±
0.0010
12124-97-9*510

Most Influential reactions involving HBr (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.9965658.1 Br2 (g) CH2F2 (g) → HBr (g) CHF2Br (g) ΔrH°(298.15 K) = -9.54 ± 0.07 kcal/molOkafo 1974, as quoted by Cox 1970
0.9634675.3 CH3Br (g) HCl (g) → CH3Cl (g) HBr (g) ΔrG°(449.3 K) = 10.036 ± 0.019 kJ/molBak 1948, 3rd Law
0.946983.1 HBr (g) → HBr (aq, 2570 H2O) ΔrH°(298.15 K) = -20.286 ± 0.012 kcal/molVanderzee 1963
0.8484748.1 Br2 (g) CHCl3 (g) → HBr (g) CCl3Br (g) ΔrH°(298.15 K) = -1.41 ± 0.10 kcal/molMendenhall 1973, as quoted by Pedley 1986
0.8364998.1 CH2CH2 (g) HBr (g) → CH3CH2Br (g) ΔrG°(546 K) = -8.340 ± 0.203 kJ/molLane 1953, 3rd Law
0.8073581.4 CH3CO (g) HBr (g) → CH3CHO (g) Br (g) ΔrG°(298.15 K) = 0.199 ± 0.250 kJ/molKovacs 2005, Atkinson 1999, 3rd Law
0.5111011.2 [HBr]- (g) → HBr (g) ΔrH°(0 K) = -0.247 ± 0.061 eVRuscic G4
0.4725695.1 CH3CHBr2 (g) → CH2CHBr (g) HBr (g) ΔrH°(298.15 K) = 16.8 ± 0.6 kcal/molLevanova 1970, 2nd Law
0.4401712.2 [ON(O)O]- (g) HBr (g) → Br- (g) HON(O)O (g) ΔrH°(391 K) = -1.03 ± 0.21 kcal/molDavidson 1977, 2nd Law
0.2631011.1 [HBr]- (g) → HBr (g) ΔrH°(0 K) = -0.224 ± 0.085 eVRuscic G3X
0.2341008.2 HBr (g) → [HBr]+ (g) ΔrH°(0 K) = 94098.7 ± 1 cm-1Wales 1996
0.2341008.3 HBr (g) → [HBr]+ (g) ΔrH°(0 K) = 94098.3 ± 1 cm-1Irrgang 1996a
0.2341008.1 HBr (g) → [HBr]+ (g) ΔrH°(0 K) = 94098.9 ± 1 cm-1Wales 1996
0.2341008.4 HBr (g) → [HBr]+ (g) ΔrH°(0 K) = 94099.75 ± 1 cm-1Irrgang 1996
0.2241011.3 [HBr]- (g) → HBr (g) ΔrH°(0 K) = -0.190 ± 0.092 eVRuscic CBS-n
0.1991056.10 HOBr (g) HCl (g) → HOCl (g) HBr (g) ΔrH°(0 K) = 9.94 ± 0.25 kcal/molTrogolo 2015, est unc


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122r of the Thermochemical Network (2021); available at ATcT.anl.gov
4   D. Feller, D. H. Bross, and B. Ruscic,
Enthalpy of Formation of C2H2O4 (Oxalic Acid) from High-Level Calculations and the Active Thermochemical Tables Approach.
J. Phys. Chem. A 123, 3481-3496 (2019) [DOI: 10.1021/acs.jpca.8b12329]
5   B. K. Welch, R. Dawes, D. H. Bross, and B. Ruscic,
An Automated Thermochemistry Protocol Based on Explicitly Correlated Coupled-Cluster Theory: The Methyl and Ethyl Peroxy Families.
J. Phys. Chem. A 123, 5673-5682 (2019) [DOI: 10.1021/acs.jpca.8b12329]
6   D. H. Bross, H.-G. Yu, L. B. Harding, and B. Ruscic,
Active Thermochemical Tables: The Partition Function of Hydroxymethyl (CH2OH) Revisited.
J. Phys. Chem. A 123, 4212-4231 (2019) [DOI: 10.1021/acs.jpca.9b02295]
7   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
Uncertainties The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
Website Functionality Credits The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
Acknowledgement This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.