Selected ATcT [1, 2] enthalpy of formation based on version 1.122r of the Thermochemical Network [3] This version of ATcT results was generated from an expansion of version 1.122q [4, 5] to include a non-rigid rotor anharmonic oscillator (NRRAO) partition function for hydroxymethyl [6], as well as data on 42 additional species, some of which are related to soot formation mechanisms.
|
Species Name |
Formula |
Image |
ΔfH°(0 K) |
ΔfH°(298.15 K) |
Uncertainty |
Units |
Relative Molecular Mass |
ATcT ID |
Hydrogen iodide | HI (g) | | 28.646 | 26.471 | ± 0.036 | kJ/mol | 127.912410 ± 0.000076 | 10034-85-2*0 |
|
Representative Geometry of HI (g) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of HI (g)The 9 contributors listed below account for 98.0% of the provenance of ΔfH° of HI (g).
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 78.5 | 1092.1 | 2 HI (g) → H2 (g) + I2 (g)  | ΔrG°(721.5 K) = 23.625 ± 0.080 kJ/mol | Taylor 1941, 3rd Law | 11.4 | 1093.1 | HI (g) → 1/2 H2 (g) + 1/2 I2 (g)  | ΔrG°(704 K) = 11.571 ± 0.028 (×3.748) kJ/mol | Rittenberg 1934, note HI, 3rd Law | 6.3 | 1092.2 | 2 HI (g) → H2 (g) + I2 (g)  | ΔrH°(721.5 K) = 12.583 ± 0.282 kJ/mol | Taylor 1941, 2nd Law | 0.4 | 1093.3 | HI (g) → 1/2 H2 (g) + 1/2 I2 (g)  | ΔrG°(644.4 K) = 11.143 ± 0.515 kJ/mol | Bodenstein 1894, 3rd Law | 0.4 | 1093.5 | HI (g) → 1/2 H2 (g) + 1/2 I2 (g)  | ΔrG°(735 K) = 11.718 ± 0.545 kJ/mol | Bright 1947, note HI, 3rd Law | 0.2 | 2771.4 | CH3CHCH2 (g) + 2 HI (g) → CH3CH2CH3 (g) + I2 (g)  | ΔrG°(597 K) = -5.79 ± 0.20 (×1.682) kcal/mol | Nangia 1964, Nangia 1964a, 3rd Law, est unc | 0.2 | 1093.4 | HI (g) → 1/2 H2 (g) + 1/2 I2 (g)  | ΔrH°(644.4 K) = 6.343 ± 0.745 kJ/mol | Bodenstein 1894, 2nd Law | 0.1 | 1091.3 | HI (g) → H (g) + I (g)  | ΔrH°(0 K) = 70.33 ± 0.2 kcal/mol | Feller 2008 | 0.1 | 1096.1 | HI (g) + Cl (g) → HCl (g) + I (g)  | ΔrH°(0 K) = -31.82 ± 0.2 kcal/mol | Feller 2008 |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of HI (g) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 39.3 | Hydrogen iodide | HI (aq) | | | -56.823 | ± 0.090 | kJ/mol | 127.912410 ± 0.000076 | 10034-85-2*800 | 39.3 | Iodide | I- (aq) | | | -56.823 | ± 0.090 | kJ/mol | 126.905019 ± 0.000030 | 20461-54-5*800 | 8.6 | Triiodide | [I3]- (aq) | | | -51.44 | ± 0.80 | kJ/mol | 380.713959 ± 0.000090 | 14900-04-0*800 | 5.4 | Iodine | I (g) | | 107.157 | 106.757 | ± 0.0021 | kJ/mol | 126.904470 ± 0.000030 | 14362-44-8*0 | 5.4 | Iodine | I (g, 2P1/2) | | 198.109 | 197.709 | ± 0.0021 | kJ/mol | 126.904470 ± 0.000030 | 14362-44-8*2 | 5.4 | Iodine | I (g, 2P3/2) | | 107.157 | 106.757 | ± 0.0021 | kJ/mol | 126.904470 ± 0.000030 | 14362-44-8*1 | 5.4 | Diiodine | I2 (g) | | 65.497 | 62.417 | ± 0.0041 | kJ/mol | 253.808940 ± 0.000060 | 7553-56-2*0 | 4.9 | Iodide | I- (g) | | -187.995 | -188.396 | ± 0.0021 | kJ/mol | 126.905019 ± 0.000030 | 20461-54-5*0 | 3.0 | Azide | [NNN]- (aq) | | | 272.64 | ± 0.48 | kJ/mol | 42.02077 ± 0.00021 | 14343-69-2*800 | 3.0 | Hydrazoic acid | HNNN (aq) | | | 272.64 | ± 0.48 | kJ/mol | 43.02816 ± 0.00022 | 7782-79-8*800 |
|
Most Influential reactions involving HI (g)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.961 | 1098.1 | HI (g) → HI (aq)  | ΔrH°(298.15 K) = -19.905 ± 0.020 kcal/mol | Vanderzee 1974 | 0.788 | 1092.1 | 2 HI (g) → H2 (g) + I2 (g)  | ΔrG°(721.5 K) = 23.625 ± 0.080 kJ/mol | Taylor 1941, 3rd Law | 0.140 | 4730.1 | CHF3 (g) + I2 (g) → CF3I (g) + HI (g)  | ΔrH°(298.15 K) = 17.10 ± 0.34 kcal/mol | Goy 1967, as quoted by Cox 1970 | 0.114 | 1093.1 | HI (g) → 1/2 H2 (g) + 1/2 I2 (g)  | ΔrG°(704 K) = 11.571 ± 0.028 (×3.748) kJ/mol | Rittenberg 1934, note HI, 3rd Law | 0.097 | 4633.2 | CI4 (g) + 4 HCl (g) → CCl4 (g) + 4 HI (g)  | ΔrH°(0 K) = 14.17 ± 3.1 kcal/mol | Ruscic unpub | 0.097 | 4631.2 | CI4 (g) + 4 H2 (g) → CH4 (g) + 4 HI (g)  | ΔrH°(0 K) = -70.42 ± 3.1 kcal/mol | Ruscic unpub | 0.091 | 4633.3 | CI4 (g) + 4 HCl (g) → CCl4 (g) + 4 HI (g)  | ΔrH°(0 K) = 14.75 ± 3.2 kcal/mol | Ruscic unpub | 0.091 | 4631.3 | CI4 (g) + 4 H2 (g) → CH4 (g) + 4 HI (g)  | ΔrH°(0 K) = -70.03 ± 3.2 kcal/mol | Ruscic unpub | 0.063 | 1092.2 | 2 HI (g) → H2 (g) + I2 (g)  | ΔrH°(721.5 K) = 12.583 ± 0.282 kJ/mol | Taylor 1941, 2nd Law | 0.055 | 1141.2 | HOI (g) + H2 (g) → H2O (g) + HI (g)  | ΔrH°(0 K) = -37.92 ± 3.1 kcal/mol | Ruscic unpub | 0.052 | 1141.3 | HOI (g) + H2 (g) → H2O (g) + HI (g)  | ΔrH°(0 K) = -37.80 ± 3.2 kcal/mol | Ruscic unpub | 0.046 | 1141.1 | HOI (g) + H2 (g) → H2O (g) + HI (g)  | ΔrH°(0 K) = -36.97 ± 3.4 kcal/mol | Ruscic unpub | 0.041 | 4695.4 | CH3I (g) + HI (g) → I2 (g) + CH4 (g)  | ΔrG°(669 K) = -10.34 ± 0.09 (×2.181) kcal/mol | Goy 1965, 3rd Law | 0.038 | 4695.2 | CH3I (g) + HI (g) → I2 (g) + CH4 (g)  | ΔrG°(630.5 K) = -10.48 ± 0.08 (×2.538) kcal/mol | Golden 1965, 3rd Law, Cox 1970 | 0.026 | 1098.2 | HI (g) → HI (aq)  | ΔrG°(298.15 K) = -53.93 ± 0.50 kJ/mol | Bates 1919, as quoted by CODATA Key Vals | 0.025 | 1095.1 | HI (g) + Br (g) → HBr (g) + I (g)  | ΔrH°(0 K) = -16.14 ± 0.2 kcal/mol | Feller 2008 | 0.016 | 2468.2 | ICN (g) + HBr (g) → BrCN (g) + HI (g)  | ΔrH°(0 K) = 5.21 ± 3.1 kcal/mol | Ruscic unpub | 0.015 | 2468.3 | ICN (g) + HBr (g) → BrCN (g) + HI (g)  | ΔrH°(0 K) = 5.20 ± 3.2 kcal/mol | Ruscic unpub | 0.014 | 2465.2 | ICN (g) + H2 (g) → HCN (g) + HI (g)  | ΔrH°(0 K) = -15.93 ± 3.1 kcal/mol | Ruscic unpub | 0.014 | 2771.4 | CH3CHCH2 (g) + 2 HI (g) → CH3CH2CH3 (g) + I2 (g)  | ΔrG°(597 K) = -5.79 ± 0.20 (×1.682) kcal/mol | Nangia 1964, Nangia 1964a, 3rd Law, est unc |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.122r of the Thermochemical Network, Argonne National Laboratory, Lemont, Illinois 2021 [DOI: 10.17038/CSE/1822363]; available at ATcT.anl.gov
|
4
|
|
D. Feller, D. H. Bross, and B. Ruscic,
Enthalpy of Formation of C2H2O4 (Oxalic Acid) from High-Level Calculations and the Active Thermochemical Tables Approach.
J. Phys. Chem. A 123, 3481-3496 (2019)
[DOI: 10.1021/acs.jpca.8b12329]
|
5
|
|
B. K. Welch, R. Dawes, D. H. Bross, and B. Ruscic,
An Automated Thermochemistry Protocol Based on Explicitly Correlated Coupled-Cluster Theory: The Methyl and Ethyl Peroxy Families.
J. Phys. Chem. A 123, 5673-5682 (2019)
[DOI: 10.1021/acs.jpca.8b12329]
|
6
|
|
D. H. Bross, H.-G. Yu, L. B. Harding, and B. Ruscic,
Active Thermochemical Tables: The Partition Function of Hydroxymethyl (CH2OH) Revisited.
J. Phys. Chem. A 123, 4212-4231 (2019)
[DOI: 10.1021/acs.jpca.9b02295]
|
7
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
|