Selected ATcT [1, 2] enthalpy of formation based on version 1.122r of the Thermochemical Network [3] This version of ATcT results was generated from an expansion of version 1.122q [4, 5] to include a non-rigid rotor anharmonic oscillator (NRRAO) partition function for hydroxymethyl [6], as well as data on 42 additional species, some of which are related to soot formation mechanisms.
|
Species Name |
Formula |
Image |
ΔfH°(0 K) |
ΔfH°(298.15 K) |
Uncertainty |
Units |
Relative Molecular Mass |
ATcT ID |
Nitric acid | HON(O)O (g) | | -124.50 | -134.21 | ± 0.18 | kJ/mol | 63.01288 ± 0.00091 | 7697-37-2*0 |
|
Representative Geometry of HON(O)O (g) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of HON(O)O (g)The 9 contributors listed below account for 80.6% of the provenance of ΔfH° of HON(O)O (g).
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 28.7 | 1454.3 | (NH4)NO3 (cr,l) → N2 (g) + 1/2 O2 (g) + 2 H2O (cr,l)  | ΔrH°(293.65 K) = -49.44 ± 0.06 kcal/mol | Becker 1934 | 24.5 | 1699.1 | 2 ONO (g) + 1/2 O2 (g) + H2O (g) → 2 HON(O)O (g)  | ΔrG°(371 K) = -6.04 ± 0.63 kJ/mol | Jones 1943, 3rd Law | 9.6 | 1698.1 | 3 ONO (g) + H2O (g) → NO (g) + 2 HON(O)O (g)  | ΔrH°(293.1 K) = -8.95 ± 0.24 kcal/mol | Forsythe 1942, Chambers 1937, Wilson 1940, apud Gurvich TPIS | 7.0 | 1698.4 | 3 ONO (g) + H2O (g) → NO (g) + 2 HON(O)O (g)  | ΔrG°(298.15 K) = 10.33 ± 1.08 (×1.091) kJ/mol | Chambers 1937, 3rd Law | 3.2 | 1724.1 | HON(O)O (cr,l) → HON(O)O (g)  | ΔrH°(293.15 K) = 9.426 ± 0.030 kcal/mol | Wilson 1940, est unc | 2.2 | 1698.3 | 3 ONO (g) + H2O (g) → NO (g) + 2 HON(O)O (g)  | ΔrH°(298.15 K) = -9.124 ± 0.5 kcal/mol | Forsythe 1942, Chambers 1937, est unc | 2.2 | 1698.2 | 3 ONO (g) + H2O (g) → NO (g) + 2 HON(O)O (g)  | ΔrH°(298.15 K) = -9.184 ± 0.5 kcal/mol | Forsythe 1942, est unc | 1.5 | 1729.1 | 2 NO (g) + 3/2 O2 (g) + H2O (cr,l) → 2 HON(O)O (aq)  | ΔrH°(298.15 K) = -74.05 ± 0.5 kcal/mol | Forsythe 1942, est unc | 1.3 | 1216.1 | NO (g) → N (g) + O (g)  | ΔrH°(0 K) = 52400 ± 10 cm-1 | Callear 1970 |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of HON(O)O (g) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 85.1 | Nitric acid | HON(O)O (cr,l) | | -179.02 | -173.30 | ± 0.18 | kJ/mol | 63.01288 ± 0.00091 | 7697-37-2*500 | 84.2 | Nitric acid | HON(O)O (aq) | | | -206.64 | ± 0.18 | kJ/mol | 63.01288 ± 0.00091 | 7697-37-2*800 | 84.2 | Nitrate | [ON(O)O]- (aq) | | | -206.64 | ± 0.18 | kJ/mol | 62.00549 ± 0.00090 | 14797-55-8*800 | 84.1 | Nitric acid | HON(O)O (aq, 3 H2O) | | | -197.77 | ± 0.18 | kJ/mol | 63.01288 ± 0.00091 | 7697-37-2*805 | 83.8 | Nitric acid | HON(O)O (aq, 1000 H2O) | | | -206.32 | ± 0.18 | kJ/mol | 63.01288 ± 0.00091 | 7697-37-2*839 | 83.8 | Nitric acid | HON(O)O (aq, 1 H2O) | | | -186.85 | ± 0.18 | kJ/mol | 63.01288 ± 0.00091 | 7697-37-2*801 | 83.3 | Nitric acid monohydrate | (HON(O)O)(H2O) (cr,l) | | -479.18 | -472.68 | ± 0.19 | kJ/mol | 81.0282 ± 0.0012 | 13444-82-1*500 | 79.4 | Ammonium nitrate | (NH4)NO3 (cr,l) | | -350.29 | -365.26 | ± 0.18 | kJ/mol | 80.04344 ± 0.00095 | 6484-52-2*500 | 78.6 | Nitric acid trihydrate | (HON(O)O)(H2O)3 (cr,l) | | -1062.10 | -1055.25 | ± 0.21 | kJ/mol | 117.0587 ± 0.0019 | 13444-83-2*500 | -25.7 | Methyl nitrite | CH3ONO (g) | | -55.52 | -66.19 | ± 0.45 | kJ/mol | 61.0401 ± 0.0010 | 624-91-9*0 |
|
Most Influential reactions involving HON(O)O (g)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.795 | 5606.2 | CH3OH (g) + 2 ONO (g) → HON(O)O (g) + CH3ONO (g)  | ΔrG°(393.95 K) = -0.865 ± 0.105 kcal/mol | Silverwood 1967, 3rd Law | 0.584 | 1724.1 | HON(O)O (cr,l) → HON(O)O (g)  | ΔrH°(293.15 K) = 9.426 ± 0.030 kcal/mol | Wilson 1940, est unc | 0.479 | 1691.1 | HON(O)O (g) → [HON(O)O]+ (g)  | ΔrH°(0 K) = 11.95 ± 0.01 eV | Lloyd 1975, Ames 1976 | 0.479 | 1691.2 | HON(O)O (g) → [HON(O)O]+ (g)  | ΔrH°(0 K) = 11.96 ± 0.01 eV | Frost 1975 | 0.440 | 1712.2 | [ON(O)O]- (g) + HBr (g) → Br- (g) + HON(O)O (g)  | ΔrH°(391 K) = -1.03 ± 0.21 kcal/mol | Davidson 1977, 2nd Law | 0.288 | 1699.1 | 2 ONO (g) + 1/2 O2 (g) + H2O (g) → 2 HON(O)O (g)  | ΔrG°(371 K) = -6.04 ± 0.63 kJ/mol | Jones 1943, 3rd Law | 0.245 | 1692.7 | [HON(O)O]- (g) → HON(O)O (g)  | ΔrH°(0 K) = 0.707 ± 0.050 eV | Ruscic W1RO | 0.210 | 1724.4 | HON(O)O (cr,l) → HON(O)O (g)  | ΔrH°(298.15 K) = 9.331 ± 0.05 kcal/mol | NBS Tables 1989, est unc | 0.165 | 1692.5 | [HON(O)O]- (g) → HON(O)O (g)  | ΔrH°(0 K) = 0.733 ± 0.061 eV | Ruscic G4 | 0.162 | 1712.1 | [ON(O)O]- (g) + HBr (g) → Br- (g) + HON(O)O (g)  | ΔrH°(0 K) = -0.045 ± 0.015 eV | Ferguson 1972b | 0.116 | 1754.5 | HOON(O)O (g) + H2O (g) → HON(O)O (g) + H2O2 (g)  | ΔrH°(0 K) = 6.31 ± 0.9 kcal/mol | Ruscic W1RO | 0.113 | 1698.1 | 3 ONO (g) + H2O (g) → NO (g) + 2 HON(O)O (g)  | ΔrH°(293.1 K) = -8.95 ± 0.24 kcal/mol | Forsythe 1942, Chambers 1937, Wilson 1940, apud Gurvich TPIS | 0.094 | 1754.4 | HOON(O)O (g) + H2O (g) → HON(O)O (g) + H2O2 (g)  | ΔrH°(0 K) = 7.19 ± 1.0 kcal/mol | Ruscic CBS-n | 0.094 | 1754.2 | HOON(O)O (g) + H2O (g) → HON(O)O (g) + H2O2 (g)  | ΔrH°(0 K) = 6.79 ± 1.0 kcal/mol | Ruscic G4 | 0.085 | 1692.4 | [HON(O)O]- (g) → HON(O)O (g)  | ΔrH°(0 K) = 0.684 ± 0.085 eV | Ruscic G3X | 0.082 | 1698.4 | 3 ONO (g) + H2O (g) → NO (g) + 2 HON(O)O (g)  | ΔrG°(298.15 K) = 10.33 ± 1.08 (×1.091) kJ/mol | Chambers 1937, 3rd Law | 0.078 | 1754.1 | HOON(O)O (g) + H2O (g) → HON(O)O (g) + H2O2 (g)  | ΔrH°(0 K) = 7.12 ± 1.1 kcal/mol | Ruscic G3X | 0.074 | 1712.3 | [ON(O)O]- (g) + HBr (g) → Br- (g) + HON(O)O (g)  | ΔrG°(391 K) = 0.76 ± 0.45 (×1.139) kcal/mol | Davidson 1977, 3rd Law | 0.072 | 1692.6 | [HON(O)O]- (g) → HON(O)O (g)  | ΔrH°(0 K) = 0.678 ± 0.092 eV | Ruscic CBS-n | 0.062 | 5606.1 | CH3OH (g) + 2 ONO (g) → HON(O)O (g) + CH3ONO (g)  | ΔrH°(393.95 K) = -15.808 ± 0.376 kcal/mol | Silverwood 1967, 2nd Law |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.122r of the Thermochemical Network, Argonne National Laboratory, Lemont, Illinois 2021 [DOI: 10.17038/CSE/1822363]; available at ATcT.anl.gov
|
4
|
|
D. Feller, D. H. Bross, and B. Ruscic,
Enthalpy of Formation of C2H2O4 (Oxalic Acid) from High-Level Calculations and the Active Thermochemical Tables Approach.
J. Phys. Chem. A 123, 3481-3496 (2019)
[DOI: 10.1021/acs.jpca.8b12329]
|
5
|
|
B. K. Welch, R. Dawes, D. H. Bross, and B. Ruscic,
An Automated Thermochemistry Protocol Based on Explicitly Correlated Coupled-Cluster Theory: The Methyl and Ethyl Peroxy Families.
J. Phys. Chem. A 123, 5673-5682 (2019)
[DOI: 10.1021/acs.jpca.8b12329]
|
6
|
|
D. H. Bross, H.-G. Yu, L. B. Harding, and B. Ruscic,
Active Thermochemical Tables: The Partition Function of Hydroxymethyl (CH2OH) Revisited.
J. Phys. Chem. A 123, 4212-4231 (2019)
[DOI: 10.1021/acs.jpca.9b02295]
|
7
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
|