Selected ATcT [1, 2] enthalpy of formation based on version 1.122r of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122q [4, 5] to include a non-rigid rotor anharmonic oscillator (NRRAO) partition function for hydroxymethyl [6], as well as data on 42 additional species, some of which are related to soot formation mechanisms.

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
Hydrogen chlorideHCl (g)Cl-91.989-92.173± 0.0062kJ/mol36.46064 ±
0.00090
7647-01-0*0

Representative Geometry of HCl (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of HCl (g)

The 9 contributors listed below account for 98.0% of the provenance of ΔfH° of HCl (g).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
45.3679.1 HCl (g) → H+ (g) Cl- (g) ΔrH°(0 K) = 116289.0 ± 0.6 cm-1Martin 1998, note HCl
20.1679.2 HCl (g) → H+ (g) Cl- (g) ΔrH°(0 K) = 116287.7 ± 0.9 cm-1Hu 2003, note HCl
12.4674.1 HCl (g) → [HCl]+ (g) ΔrH°(0 K) = 102801.5 ± 1 cm-1Drescher 1993, note HCl
8.0666.2 Cl- (g) → Cl (g) ΔrH°(0 K) = 29138.59 ± 0.22 cm-1Berzinsh 1995
4.8680.1 [HCl]+ (g) → H (g) Cl+ (g) ΔrH°(0 K) = 37537.0 ± 0.5 cm-1Michel 2002, note HCl
3.1674.2 HCl (g) → [HCl]+ (g) ΔrH°(0 K) = 102802.8 ± 2 cm-1Tonkyn 1992, note HCl
1.7656.7 Cl2 (g) → 2 Cl (g) ΔrH°(0 K) = 19999.12 ± 0.2 cm-1Douglas 1975, est unc
1.5666.1 Cl- (g) → Cl (g) ΔrH°(0 K) = 29138.3 ± 0.5 cm-1Trainham 1987, Larson 1988
0.7656.6 Cl2 (g) → 2 Cl (g) ΔrH°(0 K) = 19999.09 ± 0.3 cm-1LeRoy 1971, note Cl2, LeRoy 1970d, LeRoy 1970b

Top 10 species with enthalpies of formation correlated to the ΔfH° of HCl (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
36.1 ChlorideCl- (g)[Cl-]-228.953-227.346± 0.0021kJ/mol35.45325 ±
0.00090
16887-00-6*0
27.3 Chloroniumyl ion[HCl]+ (g)[ClH+]1137.7971137.731± 0.0051kJ/mol36.46009 ±
0.00090
12258-94-5*0
23.4 Hydrogen chlorideHCl (aq)Cl-166.992± 0.023kJ/mol36.46064 ±
0.00090
7647-01-0*800
23.4 ChlorideCl- (aq)[Cl-]-166.992± 0.023kJ/mol35.45325 ±
0.00090
16887-00-6*800
22.6 Hydrogen chlorideHCl (aq, 2439 H2O)Cl-166.713± 0.024kJ/mol36.46064 ±
0.00090
7647-01-0*951
22.5 Hydrogen chlorideHCl (aq, 2000 H2O)Cl-166.683± 0.024kJ/mol36.46064 ±
0.00090
7647-01-0*841
22.2 Hydrogen chlorideHCl (aq, 3000 H2O)Cl-166.741± 0.024kJ/mol36.46064 ±
0.00090
7647-01-0*842
22.2 Hydrogen chlorideHCl (aq, 1000 H2O)Cl-166.565± 0.024kJ/mol36.46064 ±
0.00090
7647-01-0*839
22.1 Hydrogen chlorideHCl (aq, 600 H2O)Cl-166.452± 0.024kJ/mol36.46064 ±
0.00090
7647-01-0*834
21.9 Hydrogen chlorideHCl (aq, 200 H2O)Cl-166.105± 0.024kJ/mol36.46064 ±
0.00090
7647-01-0*830

Most Influential reactions involving HCl (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.9634675.3 CH3Br (g) HCl (g) → CH3Cl (g) HBr (g) ΔrG°(449.3 K) = 10.036 ± 0.019 kJ/molBak 1948, 3rd Law
0.7704583.1 CH2CCl2 (g) HCl (g) → CH3CCl3 (g) ΔrG°(373.65 K) = 2.33 ± 0.45 kJ/molHu 1972, 3rd Law, est unc
0.559679.1 HCl (g) → H+ (g) Cl- (g) ΔrH°(0 K) = 116289.0 ± 0.6 cm-1Martin 1998, note HCl
0.4804494.1 CH2CH2 (g) HCl (g) → CH3CH2Cl (g) ΔrG°(471 K) = -10.007 ± 0.350 kJ/molLane 1953, 3rd Law
0.3904568.1 CH3CHCl2 (cr,l) → CH2CHCl (g) HCl (g) ΔrH°(308 K) = 93.24 ± 0.7 kJ/molLevanova 1976, Manion 2002, 2nd Law
0.3414543.1 CHCl2CCl3 (cr,l) → CCl2CCl2 (l) HCl (g) ΔrH°(298.15 K) = 11.3 ± 1.0 kcal/molKirkbride 1956, est unc
0.3244565.2 CH3CHCl2 (g) → CH2CHCl (g) HCl (g) ΔrG°(420.5 K) = 0.8 ± 0.7 kJ/molLevanova 1976, Manion 2002, 3rd Law
0.322674.1 HCl (g) → [HCl]+ (g) ΔrH°(0 K) = 102801.5 ± 1 cm-1Drescher 1993, note HCl
0.265693.1 HCl (g) → HCl (aq) ΔrH°(298.15 K) = -17.884 ± 0.010 kcal/molGunn 1963, Gunn 1964, as quoted by CODATA Key Vals, Vanderzee 1963
0.258675.7 [HCl]- (g) → HCl (g) ΔrH°(0 K) = -0.678 ± 0.050 eVRuscic W1RO
0.248679.2 HCl (g) → H+ (g) Cl- (g) ΔrH°(0 K) = 116287.7 ± 0.9 cm-1Hu 2003, note HCl
0.246904.4 [ClOH2]+ (g) HCl (g) → HOCl (g) [HClH]+ (g) ΔrH°(0 K) = 18.82 ± 0.8 kcal/molRuscic W1RO
0.2024590.1 CHCl2CHCl2 (cr,l) → CHClCCl2 (l) HCl (g) ΔrH°(298.15 K) = 14.4 ± 1.0 kcal/molKirkbride 1956, est unc
0.1991056.10 HOBr (g) HCl (g) → HOCl (g) HBr (g) ΔrH°(0 K) = 9.94 ± 0.25 kcal/molTrogolo 2015, est unc


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122r of the Thermochemical Network, Argonne National Laboratory, Lemont, Illinois 2021 [DOI: 10.17038/CSE/1822363]; available at ATcT.anl.gov
4   D. Feller, D. H. Bross, and B. Ruscic,
Enthalpy of Formation of C2H2O4 (Oxalic Acid) from High-Level Calculations and the Active Thermochemical Tables Approach.
J. Phys. Chem. A 123, 3481-3496 (2019) [DOI: 10.1021/acs.jpca.8b12329]
5   B. K. Welch, R. Dawes, D. H. Bross, and B. Ruscic,
An Automated Thermochemistry Protocol Based on Explicitly Correlated Coupled-Cluster Theory: The Methyl and Ethyl Peroxy Families.
J. Phys. Chem. A 123, 5673-5682 (2019) [DOI: 10.1021/acs.jpca.8b12329]
6   D. H. Bross, H.-G. Yu, L. B. Harding, and B. Ruscic,
Active Thermochemical Tables: The Partition Function of Hydroxymethyl (CH2OH) Revisited.
J. Phys. Chem. A 123, 4212-4231 (2019) [DOI: 10.1021/acs.jpca.9b02295]
7   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
Uncertainties The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
Website Functionality Credits The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
Acknowledgement This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.