Selected ATcT [1, 2] enthalpy of formation based on version 1.122r of the Thermochemical Network [3] This version of ATcT results was generated from an expansion of version 1.122q [4, 5] to include a non-rigid rotor anharmonic oscillator (NRRAO) partition function for hydroxymethyl [6], as well as data on 42 additional species, some of which are related to soot formation mechanisms.
|
Species Name |
Formula |
Image |
ΔfH°(0 K) |
ΔfH°(298.15 K) |
Uncertainty |
Units |
Relative Molecular Mass |
ATcT ID |
Hydrogen chloride | HCl (g) | | -91.989 | -92.173 | ± 0.0062 | kJ/mol | 36.46064 ± 0.00090 | 7647-01-0*0 |
|
Representative Geometry of HCl (g) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of HCl (g)The 9 contributors listed below account for 98.0% of the provenance of ΔfH° of HCl (g).
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 45.3 | 679.1 | HCl (g) → H+ (g) + Cl- (g)  | ΔrH°(0 K) = 116289.0 ± 0.6 cm-1 | Martin 1998, note HCl | 20.1 | 679.2 | HCl (g) → H+ (g) + Cl- (g)  | ΔrH°(0 K) = 116287.7 ± 0.9 cm-1 | Hu 2003, note HCl | 12.4 | 674.1 | HCl (g) → [HCl]+ (g)  | ΔrH°(0 K) = 102801.5 ± 1 cm-1 | Drescher 1993, note HCl | 8.0 | 666.2 | Cl- (g) → Cl (g)  | ΔrH°(0 K) = 29138.59 ± 0.22 cm-1 | Berzinsh 1995 | 4.8 | 680.1 | [HCl]+ (g) → H (g) + Cl+ (g)  | ΔrH°(0 K) = 37537.0 ± 0.5 cm-1 | Michel 2002, note HCl | 3.1 | 674.2 | HCl (g) → [HCl]+ (g)  | ΔrH°(0 K) = 102802.8 ± 2 cm-1 | Tonkyn 1992, note HCl | 1.7 | 656.7 | Cl2 (g) → 2 Cl (g)  | ΔrH°(0 K) = 19999.12 ± 0.2 cm-1 | Douglas 1975, est unc | 1.5 | 666.1 | Cl- (g) → Cl (g)  | ΔrH°(0 K) = 29138.3 ± 0.5 cm-1 | Trainham 1987, Larson 1988 | 0.7 | 656.6 | Cl2 (g) → 2 Cl (g)  | ΔrH°(0 K) = 19999.09 ± 0.3 cm-1 | LeRoy 1971, note Cl2, LeRoy 1970d, LeRoy 1970b |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of HCl (g) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 36.1 | Chloride | Cl- (g) | | -228.953 | -227.346 | ± 0.0021 | kJ/mol | 35.45325 ± 0.00090 | 16887-00-6*0 | 27.3 | Chloroniumyl ion | [HCl]+ (g) | | 1137.797 | 1137.731 | ± 0.0051 | kJ/mol | 36.46009 ± 0.00090 | 12258-94-5*0 | 23.4 | Hydrogen chloride | HCl (aq) | | | -166.992 | ± 0.023 | kJ/mol | 36.46064 ± 0.00090 | 7647-01-0*800 | 23.4 | Chloride | Cl- (aq) | | | -166.992 | ± 0.023 | kJ/mol | 35.45325 ± 0.00090 | 16887-00-6*800 | 22.6 | Hydrogen chloride | HCl (aq, 2439 H2O) | | | -166.713 | ± 0.024 | kJ/mol | 36.46064 ± 0.00090 | 7647-01-0*951 | 22.5 | Hydrogen chloride | HCl (aq, 2000 H2O) | | | -166.683 | ± 0.024 | kJ/mol | 36.46064 ± 0.00090 | 7647-01-0*841 | 22.2 | Hydrogen chloride | HCl (aq, 3000 H2O) | | | -166.741 | ± 0.024 | kJ/mol | 36.46064 ± 0.00090 | 7647-01-0*842 | 22.2 | Hydrogen chloride | HCl (aq, 1000 H2O) | | | -166.565 | ± 0.024 | kJ/mol | 36.46064 ± 0.00090 | 7647-01-0*839 | 22.1 | Hydrogen chloride | HCl (aq, 600 H2O) | | | -166.452 | ± 0.024 | kJ/mol | 36.46064 ± 0.00090 | 7647-01-0*834 | 21.9 | Hydrogen chloride | HCl (aq, 200 H2O) | | | -166.105 | ± 0.024 | kJ/mol | 36.46064 ± 0.00090 | 7647-01-0*830 |
|
Most Influential reactions involving HCl (g)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.963 | 4675.3 | CH3Br (g) + HCl (g) → CH3Cl (g) + HBr (g)  | ΔrG°(449.3 K) = 10.036 ± 0.019 kJ/mol | Bak 1948, 3rd Law | 0.770 | 4583.1 | CH2CCl2 (g) + HCl (g) → CH3CCl3 (g)  | ΔrG°(373.65 K) = 2.33 ± 0.45 kJ/mol | Hu 1972, 3rd Law, est unc | 0.559 | 679.1 | HCl (g) → H+ (g) + Cl- (g)  | ΔrH°(0 K) = 116289.0 ± 0.6 cm-1 | Martin 1998, note HCl | 0.480 | 4494.1 | CH2CH2 (g) + HCl (g) → CH3CH2Cl (g)  | ΔrG°(471 K) = -10.007 ± 0.350 kJ/mol | Lane 1953, 3rd Law | 0.390 | 4568.1 | CH3CHCl2 (cr,l) → CH2CHCl (g) + HCl (g)  | ΔrH°(308 K) = 93.24 ± 0.7 kJ/mol | Levanova 1976, Manion 2002, 2nd Law | 0.341 | 4543.1 | CHCl2CCl3 (cr,l) → CCl2CCl2 (l) + HCl (g)  | ΔrH°(298.15 K) = 11.3 ± 1.0 kcal/mol | Kirkbride 1956, est unc | 0.324 | 4565.2 | CH3CHCl2 (g) → CH2CHCl (g) + HCl (g)  | ΔrG°(420.5 K) = 0.8 ± 0.7 kJ/mol | Levanova 1976, Manion 2002, 3rd Law | 0.322 | 674.1 | HCl (g) → [HCl]+ (g)  | ΔrH°(0 K) = 102801.5 ± 1 cm-1 | Drescher 1993, note HCl | 0.265 | 693.1 | HCl (g) → HCl (aq)  | ΔrH°(298.15 K) = -17.884 ± 0.010 kcal/mol | Gunn 1963, Gunn 1964, as quoted by CODATA Key Vals, Vanderzee 1963 | 0.258 | 675.7 | [HCl]- (g) → HCl (g)  | ΔrH°(0 K) = -0.678 ± 0.050 eV | Ruscic W1RO | 0.248 | 679.2 | HCl (g) → H+ (g) + Cl- (g)  | ΔrH°(0 K) = 116287.7 ± 0.9 cm-1 | Hu 2003, note HCl | 0.246 | 904.4 | [ClOH2]+ (g) + HCl (g) → HOCl (g) + [HClH]+ (g)  | ΔrH°(0 K) = 18.82 ± 0.8 kcal/mol | Ruscic W1RO | 0.202 | 4590.1 | CHCl2CHCl2 (cr,l) → CHClCCl2 (l) + HCl (g)  | ΔrH°(298.15 K) = 14.4 ± 1.0 kcal/mol | Kirkbride 1956, est unc | 0.199 | 1056.10 | HOBr (g) + HCl (g) → HOCl (g) + HBr (g)  | ΔrH°(0 K) = 9.94 ± 0.25 kcal/mol | Trogolo 2015, est unc |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.122r of the Thermochemical Network, Argonne National Laboratory, Lemont, Illinois 2021 [DOI: 10.17038/CSE/1822363]; available at ATcT.anl.gov
|
4
|
|
D. Feller, D. H. Bross, and B. Ruscic,
Enthalpy of Formation of C2H2O4 (Oxalic Acid) from High-Level Calculations and the Active Thermochemical Tables Approach.
J. Phys. Chem. A 123, 3481-3496 (2019)
[DOI: 10.1021/acs.jpca.8b12329]
|
5
|
|
B. K. Welch, R. Dawes, D. H. Bross, and B. Ruscic,
An Automated Thermochemistry Protocol Based on Explicitly Correlated Coupled-Cluster Theory: The Methyl and Ethyl Peroxy Families.
J. Phys. Chem. A 123, 5673-5682 (2019)
[DOI: 10.1021/acs.jpca.8b12329]
|
6
|
|
D. H. Bross, H.-G. Yu, L. B. Harding, and B. Ruscic,
Active Thermochemical Tables: The Partition Function of Hydroxymethyl (CH2OH) Revisited.
J. Phys. Chem. A 123, 4212-4231 (2019)
[DOI: 10.1021/acs.jpca.9b02295]
|
7
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
|