Selected ATcT [1, 2] enthalpy of formation based on version 1.122g of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122e [4] to include results centered on the determination of the appearance energy of CH3+ from CH4. [5].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
Carbon atomC (g)[C]711.399716.884± 0.047kJ/mol12.01070 ±
0.00080
7440-44-0*0

Representative Geometry of C (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of C (g)

The 20 contributors listed below account only for 32.7% of the provenance of ΔfH° of C (g).
A total of 887 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
8.21810.2 CO (g) → C+ (g) O (g) ΔrH°(0 K) = 22.3713 ± 0.0015 eVNg 2007
4.01888.1 H2 (g) C (graphite) → CH4 (g) ΔrG°(1165 K) = 37.521 ± 0.068 kJ/molSmith 1946, note COf, 3rd Law
3.8118.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
2.01818.5 C (graphite) CO2 (g) → 2 CO (g) ΔrG°(1165 K) = -33.545 ± 0.058 kJ/molSmith 1946, note COf, 3rd Law
1.81764.7 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.464 ± 0.024 kJ/molHawtin 1966, note CO2e
1.61798.5 CO (g) → C (g) O (g) ΔrH°(0 K) = 89632 ± 27 cm-1Ruscic 2003
1.54894.7 C6H6 (g) → 6 C (g) + 6 H (g) ΔrH°(0 K) = 5463.0 ± 1.8 kJ/molHarding 2011
1.41796.3 CO (g) → C (g) O (g) ΔrH°(0 K) = 89620 ± 29 cm-1Douglas 1955, Schmid 1935, note COj
1.12032.1 CH2CH2 (g) + 3 O2 (g) → 2 CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -1411.18 ± 0.30 kJ/molRossini 1937
0.84894.4 C6H6 (g) → 6 C (g) + 6 H (g) ΔrH°(0 K) = 1306.17 ± 0.60 kcal/molKarton 2009a
0.71764.5 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.468 ± 0.038 kJ/molFraser 1952, note CO2f
0.71764.4 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.462 ± 0.038 kJ/molLewis 1965, note CO2d
0.62773.1 CH3CCH (g) + 4 O2 (g) → 3 CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -463.131 ± 0.204 kcal/molWagman 1945, Wagman 1945a
0.64907.10 C6H5 (g) → 6 C (g) + 5 H (g) ΔrH°(0 K) = 1195.15 ± 0.60 kcal/molKarton 2009a
0.61768.7 CO2 (g) → C (g) + 2 O (g) ΔrH°(0 K) = 1598.16 ± 0.56 kJ/molHarding 2008
0.51900.13 CH3 (g) → C (g) + 3 H (g) ΔrH°(0 K) = 289.11 ± 0.10 kcal/molFeller 2016, note unc2
0.51801.7 CO (g) → C (g) O (g) ΔrH°(0 K) = 1071.94 ± 0.56 kJ/molHarding 2008
0.51769.1 CO2 (g) → C (g) + 2 O (g) ΔrH°(0 K) = 1598.6 ± 0.6 kJ/molRuscic 2003
0.51939.1 CH3 (g) → CH2 (g, triplet) H (g) ΔrH°(0 K) = 109.26 ± 0.08 kcal/molFeller 2016, est unc, note unc2
0.51975.1 CH3CH3 (g) + 7/2 O2 (g) → 2 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -1560.68 ± 0.25 kJ/molPittam 1972

Top 10 species with enthalpies of formation correlated to the ΔfH° of C (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
100.0 Carbon atomC (g, triplet)[C]711.399716.884± 0.047kJ/mol12.01070 ±
0.00080
7440-44-0*1
99.9 Carbon atomC (g, quintuplet)[C]1114.9621120.109± 0.047kJ/mol12.01070 ±
0.00080
7440-44-0*3
99.9 Carbon atomC (g, singlet)[C]833.330838.477± 0.047kJ/mol12.01070 ±
0.00080
7440-44-0*2
99.9 Carbon atom cationC+ (g)[C+]1797.8521803.450± 0.047kJ/mol12.01015 ±
0.00080
14067-05-1*0
99.6 Carbon atom anionC- (g)[C-]589.623594.769± 0.048kJ/mol12.01125 ±
0.00080
14337-00-9*0
87.4 Methyliumylidene[CH]+ (g)[CH+]1619.7571623.100± 0.055kJ/mol13.01809 ±
0.00080
24361-82-8*0
62.5 AcetyleneHCCH (g)C#C228.82228.26± 0.13kJ/mol26.0373 ±
0.0016
74-86-2*0
62.5 Acetylene cation[HCCH]+ (g)C#[CH+]1328.831328.17± 0.13kJ/mol26.0367 ±
0.0016
25641-79-6*0
58.8 EthynylCCH (g)C#[C]563.86567.98± 0.14kJ/mol25.0293 ±
0.0016
2122-48-7*0
51.1 Ethynylium[CCH]+ (g)C#[C+]1687.571690.91± 0.16kJ/mol25.0288 ±
0.0016
16456-59-0*0

Most Influential reactions involving C (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
1.0001761.1 C (g, triplet) → C (g) ΔrH°(0 K) = 0 ± 0 cm-1triv
0.9901760.1 C- (g) → C (g) ΔrH°(0 K) = 1.262119 ± 0.000040 eVScheer 1998, note unc
0.5951759.2 C (g) → C+ (g) ΔrH°(0 K) = 90820.33 ± 0.08 cm-1Glab 1998, Johansson 1966, Cooksy 1986
0.5733416.6 O(CHCH) (g, singlet) → 2 C (g) + 2 H (g) O (g) ΔrH°(0 K) = 437.28 ± 0.30 kcal/molKarton 2011
0.5054528.2 CHFClBr (g) → C (g) H (g) F (g) Cl (g) Br (g) ΔrH°(0 K) = 349.76 ± 1.84 kcal/molRuscic G3
0.5054531.2 CBr2FCl (g) → C (g) + 2 Br (g) F (g) Cl (g) ΔrH°(0 K) = 314.90 ± 1.84 kcal/molRuscic G3
0.5054529.2 CF2ClBr (g) → C (g) + 2 F (g) Cl (g) Br (g) ΔrH°(0 K) = 367.44 ± 1.84 kcal/molRuscic G3
0.5054530.2 CCl2FBr (g) → C (g) + 2 Cl (g) F (g) Br (g) ΔrH°(0 K) = 329.55 ± 1.84 kcal/molRuscic G3
0.5054523.2 CHFBr2 (g) → C (g) + 2 Br (g) H (g) F (g) ΔrH°(0 K) = 335.15 ± 1.84 kcal/molRuscic G3
0.5054500.2 CH2FBr (g) → C (g) + 2 H (g) F (g) Br (g) ΔrH°(0 K) = 367.54 ± 1.84 kcal/molRuscic G3
0.4944528.1 CHFClBr (g) → C (g) H (g) F (g) Cl (g) Br (g) ΔrH°(0 K) = 348.85 ± 1.86 kcal/molRuscic G3B3
0.4944531.1 CBr2FCl (g) → C (g) + 2 Br (g) F (g) Cl (g) ΔrH°(0 K) = 313.61 ± 1.86 kcal/molRuscic G3B3
0.4944529.1 CF2ClBr (g) → C (g) + 2 F (g) Cl (g) Br (g) ΔrH°(0 K) = 366.25 ± 1.86 kcal/molRuscic G3B3
0.4944530.1 CCl2FBr (g) → C (g) + 2 Cl (g) F (g) Br (g) ΔrH°(0 K) = 328.19 ± 1.86 kcal/molRuscic G3B3
0.4944523.1 CHFBr2 (g) → C (g) + 2 Br (g) H (g) F (g) ΔrH°(0 K) = 334.29 ± 1.86 kcal/molRuscic G3B3
0.4944500.1 CH2FBr (g) → C (g) + 2 H (g) F (g) Br (g) ΔrH°(0 K) = 366.99 ± 1.86 kcal/molRuscic G3B3
0.4124059.6 [CNN]+ (g) → 2 N (g) C (g) ΔrH°(0 K) = 2.64 ± 1.50 kcal/molRuscic W1RO
0.3801759.1 C (g) → C+ (g) ΔrH°(0 K) = 90820.42 ± 0.10 cm-1Johansson 1966, Moore 1970
0.3614060.6 [CNN]- (g) → 2 N (g) C (g) ΔrH°(0 K) = 297.21 ± 1.50 kcal/molRuscic W1RO
0.3554055.6 CNN (g) → 2 N (g) C (g) ΔrH°(0 K) = 256.76 ± 1.50 kcal/molRuscic W1RO


References (for your convenience, also available in RIS and BibTex format)
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122g of the Thermochemical Network (2019); available at ATcT.anl.gov
4   J. P. Porterfield, D. H. Bross, B. Ruscic, J. H. Thorpe, T. L. Nguyen, J. H. Baraban, J. F. Stanton, J. W. Daily, and G. B. Ellison,
Thermal Decomposition of Potential Ester Biofuels, Part I: Methyl Acetate and Methyl Butanoate.
J. Chem. Phys. A 121, 4658-4677 (2017) [DOI: 10.1021/acs.jpca.7b02639] (Veronica Vaida Festschrift)
5   Y.-C. Chang, B. Xiong, D. H. Bross, B. Ruscic, and C. Y. Ng,
A Vacuum Ultraviolet laser Pulsed Field Ionization-Photoion Study of Methane (CH4): Determination of the Appearance Energy of Methylium From Methane with Unprecedented Precision and the Resulting Impact on the Bond Dissociation Energies of CH4 and CH4+.
Phys. Chem. Chem. Phys. 19, 9592-9605 (2017) [DOI: 10.1039/c6cp08200a] (part of 2017 PCCP Hot Articles collection)
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.