Selected ATcT [1, 2] enthalpy of formation based on version 1.122b of the Thermochemical Network [3] This version of ATcT results was generated from an expansion of version 1.122 [4][5] to include the best possible isomerization of HCN and HNC [6].
|
Species Name |
Formula |
Image |
ΔfH°(0 K) |
ΔfH°(298.15 K) |
Uncertainty |
Units |
Relative Molecular Mass |
ATcT ID |
Bromobenzene cation | [C6H5Br]+ (g) | | 994.7 | 973.3 | ± 1.3 | kJ/mol | 157.0074 ± 0.0049 | 55450-33-4*0 |
|
Representative Geometry of [C6H5Br]+ (g) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of [C6H5Br]+ (g)The 20 contributors listed below account only for 75.5% of the provenance of ΔfH° of [C6H5Br]+ (g). A total of 43 contributors would be needed to account for 90% of the provenance.
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 13.1 | 4018.1 | C6H5Br (cr,l) + HCl (g) → C6H6 (cr,l) + 1/2 Br2 (cr,l) + 1/2 Cl2 (g)  | ΔrH°(298.15 K) = 19.98 ± 0.78 kcal/mol | Chernick 1956, Hartley 1951 | 9.4 | 4029.1 | C6H5I (cr,l) + 1/2 Br2 (cr,l) → C6H5Br (cr,l) + 1/2 I2 (cr,l)  | ΔrH°(298.15 K) = -12.85 ± 0.55 kcal/mol | Chernick 1956, Hartley 1951 | 7.2 | 4012.2 | C6H5Br (g) → [C6H5]+ (g) + Br (g)  | ΔrH°(0 K) = 11.827 ± 0.030 eV | Stevens 2009 | 5.9 | 4012.1 | C6H5Br (g) → [C6H5]+ (g) + Br (g)  | ΔrH°(0 K) = 11.781 ± 0.029 (×1.139) eV | Stevens 2009 | 5.8 | 4011.1 | C6H5Cl (g) + Br (g) → C6H5Br (g) + Cl (g)  | ΔrH°(0 K) = 0.647 ± 0.049 eV | Stevens 2009 | 5.5 | 4022.2 | C6H5Br (g) + I (g) → C6H5I (g) + Br (g)  | ΔrH°(0 K) = 0.649 ± 0.032 eV | Stevens 2009 | 3.5 | 4022.1 | C6H5Br (g) + I (g) → C6H5I (g) + Br (g)  | ΔrH°(0 K) = 0.608 ± 0.040 eV | Stevens 2009 | 2.9 | 4011.2 | C6H5Cl (g) + Br (g) → C6H5Br (g) + Cl (g)  | ΔrH°(0 K) = 0.647 ± 0.069 eV | Stevens 2009 | 2.9 | 4012.5 | C6H5Br (g) → [C6H5]+ (g) + Br (g)  | ΔrH°(0 K) = 273.5 ± 1 (×1.091) kcal/mol | Pratt 1981 | 2.7 | 3999.3 | C6H5Br (g) → 6 C (g) + 5 H (g) + Br (g)  | ΔrH°(0 K) = 1277.61 ± 1.72 kcal/mol | Ruscic G3X | 2.4 | 3999.2 | C6H5Br (g) → 6 C (g) + 5 H (g) + Br (g)  | ΔrH°(0 K) = 1277.64 ± 1.84 kcal/mol | Ruscic G3 | 2.3 | 3999.1 | C6H5Br (g) → 6 C (g) + 5 H (g) + Br (g)  | ΔrH°(0 K) = 1277.38 ± 1.86 kcal/mol | Ruscic G3B3 | 2.3 | 4031.1 | C6H5I (cr,l) + HCl (g) → C6H6 (cr,l) + 1/2 I2 (cr,l) + 1/2 Cl2 (g)  | ΔrH°(298.15 K) = 7.13 ± 0.75 kcal/mol | Chernick 1956, Hartley 1951 | 2.0 | 4013.1 | [C6H5Br]+ (g) → [C6H5]+ (g) + Br (g)  | ΔrH°(0 K) = 2.76 ± 0.02 (×2.828) eV | Rosenstock 1980, Baer 1982 | 1.5 | 4012.7 | C6H5Br (g) → [C6H5]+ (g) + Br (g)  | ΔrH°(0 K) = 11.75 ± 0.05 (×1.297) eV | Sergeev 1970 | 1.3 | 4013.2 | [C6H5Br]+ (g) → [C6H5]+ (g) + Br (g)  | ΔrH°(0 K) = 2.81 ± 0.07 eV | Dunbar 1984 | 1.0 | 3927.9 | [C6H5]+ (g) → 6 C (g) + 5 H (g)  | ΔrH°(0 K) = 4198.8 ± 4 kJ/mol | Lau 2006 | 1.0 | 4028.1 | 2 C6H5I (cr,l) + 29/2 O2 (g) → 12 CO2 (g) + 5 H2O (cr,l) + I2 (cr,l)  | ΔrH°(298.15 K) = -1526.32 ± 2.0 (×1.164) kcal/mol | Smith 1956 | 1.0 | 3925.14 | C6H5 (g) → [C6H5]+ (g)  | ΔrH°(0 K) = 8.261 ± 0.035 eV | Lau 2006 | 0.9 | 4013.3 | [C6H5Br]+ (g) → [C6H5]+ (g) + Br (g)  | ΔrH°(0 K) = 2.90 ± 0.05 (×1.682) eV | Lifshitz 1991, est unc |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of [C6H5Br]+ (g) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 99.8 | Bromobenzene | C6H5Br (g) | | 126.5 | 104.5 | ± 1.3 | kJ/mol | 157.0079 ± 0.0049 | 108-86-1*0 | 98.9 | Bromobenzene | C6H5Br (cr,l) | | | 59.8 | ± 1.3 | kJ/mol | 157.0079 ± 0.0049 | 108-86-1*500 | 49.9 | Phenylium | [C6H5]+ (g) | | 1148.47 | 1136.57 | ± 0.89 | kJ/mol | 77.1034 ± 0.0048 | 17333-73-2*0 | 49.9 | Phenylium | [C6H5]+ (g, singlet) | | 1148.47 | 1136.57 | ± 0.89 | kJ/mol | 77.1034 ± 0.0048 | 17333-73-2*2 | 49.8 | Iodobenzene | C6H5I (g) | | 177.6 | 161.6 | ± 1.0 | kJ/mol | 204.0084 ± 0.0048 | 591-50-4*0 | 49.7 | Iodobenzene cation | [C6H5I]+ (g) | | 1022.6 | 1007.1 | ± 1.0 | kJ/mol | 204.0078 ± 0.0048 | 38406-85-8*0 | 48.2 | Iodobenzene | C6H5I (cr,l) | | 112.7 | 112.8 | ± 1.1 | kJ/mol | 204.0084 ± 0.0048 | 591-50-4*500 | 18.0 | Nitrosobenzene | C6H5NO (g) | | 215.4 | 198.4 | ± 1.5 | kJ/mol | 107.1100 ± 0.0048 | 586-96-9*0 | 17.4 | Phenyl | C6H5 (g) | | 350.37 | 337.08 | ± 0.57 | kJ/mol | 77.1039 ± 0.0048 | 2396-01-2*0 | 13.6 | Chlorobenzene | C6H5Cl (g) | | 67.13 | 52.18 | ± 0.61 | kJ/mol | 112.5566 ± 0.0049 | 108-90-7*0 |
|
Most Influential reactions involving [C6H5Br]+ (g)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.979 | 4000.1 | C6H5Br (g) → [C6H5Br]+ (g)  | ΔrH°(0 K) = 72570 ± 5 cm-1 | Kwon 2002 | 0.040 | 4013.1 | [C6H5Br]+ (g) → [C6H5]+ (g) + Br (g)  | ΔrH°(0 K) = 2.76 ± 0.02 (×2.828) eV | Rosenstock 1980, Baer 1982 | 0.026 | 4013.2 | [C6H5Br]+ (g) → [C6H5]+ (g) + Br (g)  | ΔrH°(0 K) = 2.81 ± 0.07 eV | Dunbar 1984 | 0.018 | 4013.3 | [C6H5Br]+ (g) → [C6H5]+ (g) + Br (g)  | ΔrH°(0 K) = 2.90 ± 0.05 (×1.682) eV | Lifshitz 1991, est unc | 0.012 | 4013.4 | [C6H5Br]+ (g) → [C6H5]+ (g) + Br (g)  | ΔrH°(0 K) = 2.74 ± 0.10 eV | Dunbar 1985, Dunbar 1984, est unc | 0.009 | 4000.2 | C6H5Br (g) → [C6H5Br]+ (g)  | ΔrH°(0 K) = 8.991 ± 0.002 (×3.221) eV | Holland 2000 | 0.001 | 4037.1 | C6H5Br (g) + [C6H5F]+ (g) → [C6H5Br]+ (g) + C6H5F (g)  | ΔrH°(350 K) = -4.95 ± 0.5 kcal/mol | Lias 1978, 2nd Law, est unc | 0.000 | 4000.7 | C6H5Br (g) → [C6H5Br]+ (g)  | ΔrH°(0 K) = 8.98 ± 0.02 eV | Watanabe 1962 | 0.000 | 4000.6 | C6H5Br (g) → [C6H5Br]+ (g)  | ΔrH°(0 K) = 8.99 ± 0.02 eV | Klasinc 1983, est unc | 0.000 | 4000.9 | C6H5Br (g) → [C6H5Br]+ (g)  | ΔrH°(0 K) = 8.98 ± 0.02 eV | Watanabe 1957 | 0.000 | 4000.3 | C6H5Br (g) → [C6H5Br]+ (g)  | ΔrH°(0 K) = 8.998 ± 0.02 eV | Potts 1980a, est unc, von Niessen 1982 | 0.000 | 4000.4 | C6H5Br (g) → [C6H5Br]+ (g)  | ΔrH°(0 K) = 8.98 ± 0.02 eV | Walter 1991 | 0.000 | 4000.8 | C6H5Br (g) → [C6H5Br]+ (g)  | ΔrH°(0 K) = 8.98 ± 0.02 eV | Bralsford 1960 | 0.000 | 4035.1 | C6H5Br (g) + [C6H5Cl]+ (g) → [C6H5Br]+ (g) + C6H5Cl (g)  | ΔrG°(350 K) = -2.16 ± 0.5 kcal/mol | Lias 1978, 3rd Law, est unc | 0.000 | 4035.3 | C6H5Br (g) + [C6H5Cl]+ (g) → [C6H5Br]+ (g) + C6H5Cl (g)  | ΔrH°(350 K) = -1.70 ± 0.5 kcal/mol | Lias 1978, 2nd Law, est unc | 0.000 | 4035.2 | C6H5Br (g) + [C6H5Cl]+ (g) → [C6H5Br]+ (g) + C6H5Cl (g)  | ΔrH°(350 K) = -2.14 ± 0.5 kcal/mol | Lias 1978, 2nd Law, est unc | 0.000 | 4000.5 | C6H5Br (g) → [C6H5Br]+ (g)  | ΔrH°(0 K) = 8.97 ± 0.02 (×1.384) eV | Baer 1976 | 0.000 | 4000.10 | C6H5Br (g) → [C6H5Br]+ (g)  | ΔrH°(0 K) = 8.99 ± 0.03 eV | Cvitas 1977 |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.122b of the Thermochemical Network (2016); available at ATcT.anl.gov |
4
|
|
B. Ruscic,
Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry.
J. Phys. Chem. A 119, 7810-7837 (2015)
[DOI: 10.1021/acs.jpca.5b01346]
|
5
|
|
S. J. Klippenstein, L. B. Harding, and B. Ruscic,
Ab initio Computations and Active Thermochemical Tables Hand in Hand: Heats of Formation of Core Combustion Species.
J. Phys. Chem. A 121, 6580-6602 (2017)
[DOI: 10.1021/acs.jpca.7b05945]
|
6
|
|
T. L. Nguyen, J. H. Baraban, B. Ruscic, and J. F. Stanton,
On the HCN – HNC Energy Difference.
J. Phys. Chem. A 119, 10929-10934 (2015)
[DOI: 10.1021/acs.jpca.5b08406]
|
7
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|