Selected ATcT [1, 2] enthalpy of formation based on version 1.122b of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122 [4][5] to include the best possible isomerization of HCN and HNC [6].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
BromobenzeneC6H5Br (g)c1ccc(cc1)Br126.5104.5± 1.3kJ/mol157.0079 ±
0.0049
108-86-1*0

Representative Geometry of C6H5Br (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of C6H5Br (g)

The 20 contributors listed below account only for 75.7% of the provenance of ΔfH° of C6H5Br (g).
A total of 42 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
13.24018.1 C6H5Br (cr,l) HCl (g) → C6H6 (cr,l) + 1/2 Br2 (cr,l) + 1/2 Cl2 (g) ΔrH°(298.15 K) = 19.98 ± 0.78 kcal/molChernick 1956, Hartley 1951
9.44029.1 C6H5I (cr,l) + 1/2 Br2 (cr,l) → C6H5Br (cr,l) + 1/2 I2 (cr,l) ΔrH°(298.15 K) = -12.85 ± 0.55 kcal/molChernick 1956, Hartley 1951
7.24012.2 C6H5Br (g) → [C6H5]+ (g) Br (g) ΔrH°(0 K) = 11.827 ± 0.030 eVStevens 2009
6.04012.1 C6H5Br (g) → [C6H5]+ (g) Br (g) ΔrH°(0 K) = 11.781 ± 0.029 (×1.139) eVStevens 2009
5.84011.1 C6H5Cl (g) Br (g) → C6H5Br (g) Cl (g) ΔrH°(0 K) = 0.647 ± 0.049 eVStevens 2009
5.54022.2 C6H5Br (g) I (g) → C6H5I (g) Br (g) ΔrH°(0 K) = 0.649 ± 0.032 eVStevens 2009
3.54022.1 C6H5Br (g) I (g) → C6H5I (g) Br (g) ΔrH°(0 K) = 0.608 ± 0.040 eVStevens 2009
2.94011.2 C6H5Cl (g) Br (g) → C6H5Br (g) Cl (g) ΔrH°(0 K) = 0.647 ± 0.069 eVStevens 2009
2.94012.5 C6H5Br (g) → [C6H5]+ (g) Br (g) ΔrH°(0 K) = 273.5 ± 1 (×1.091) kcal/molPratt 1981
2.73999.3 C6H5Br (g) → 6 C (g) + 5 H (g) Br (g) ΔrH°(0 K) = 1277.61 ± 1.72 kcal/molRuscic G3X
2.43999.2 C6H5Br (g) → 6 C (g) + 5 H (g) Br (g) ΔrH°(0 K) = 1277.64 ± 1.84 kcal/molRuscic G3
2.33999.1 C6H5Br (g) → 6 C (g) + 5 H (g) Br (g) ΔrH°(0 K) = 1277.38 ± 1.86 kcal/molRuscic G3B3
2.34031.1 C6H5I (cr,l) HCl (g) → C6H6 (cr,l) + 1/2 I2 (cr,l) + 1/2 Cl2 (g) ΔrH°(298.15 K) = 7.13 ± 0.75 kcal/molChernick 1956, Hartley 1951
2.04013.1 [C6H5Br]+ (g) → [C6H5]+ (g) Br (g) ΔrH°(0 K) = 2.76 ± 0.02 (×2.828) eVRosenstock 1980, Baer 1982
1.54012.7 C6H5Br (g) → [C6H5]+ (g) Br (g) ΔrH°(0 K) = 11.75 ± 0.05 (×1.297) eVSergeev 1970
1.34013.2 [C6H5Br]+ (g) → [C6H5]+ (g) Br (g) ΔrH°(0 K) = 2.81 ± 0.07 eVDunbar 1984
1.03927.9 [C6H5]+ (g) → 6 C (g) + 5 H (g) ΔrH°(0 K) = 4198.8 ± 4 kJ/molLau 2006
1.04028.1 C6H5I (cr,l) + 29/2 O2 (g) → 12 CO2 (g) + 5 H2O (cr,l) I2 (cr,l) ΔrH°(298.15 K) = -1526.32 ± 2.0 (×1.164) kcal/molSmith 1956
1.03925.14 C6H5 (g) → [C6H5]+ (g) ΔrH°(0 K) = 8.261 ± 0.035 eVLau 2006
0.94012.6 C6H5Br (g) → [C6H5]+ (g) Br (g) ΔrH°(0 K) = 11.73 ± 0.05 (×1.682) eVMalinovich 1985

Top 10 species with enthalpies of formation correlated to the ΔfH° of C6H5Br (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
99.8 Bromobenzene cation[C6H5Br]+ (g)c1ccc(cc1)[Br+]994.7973.3± 1.3kJ/mol157.0074 ±
0.0049
55450-33-4*0
99.0 BromobenzeneC6H5Br (cr,l)c1ccc(cc1)Br59.8± 1.3kJ/mol157.0079 ±
0.0049
108-86-1*500
50.0 Phenylium[C6H5]+ (g)c1cccc[c+]11148.471136.57± 0.89kJ/mol77.1034 ±
0.0048
17333-73-2*0
50.0 Phenylium[C6H5]+ (g, singlet)c1cccc[c+]11148.471136.57± 0.89kJ/mol77.1034 ±
0.0048
17333-73-2*2
49.8 IodobenzeneC6H5I (g)c1ccc(cc1)I177.6161.6± 1.0kJ/mol204.0084 ±
0.0048
591-50-4*0
49.7 Iodobenzene cation[C6H5I]+ (g)c1ccc(cc1)[I+]1022.61007.1± 1.0kJ/mol204.0078 ±
0.0048
38406-85-8*0
48.3 IodobenzeneC6H5I (cr,l)c1ccc(cc1)I112.7112.8± 1.1kJ/mol204.0084 ±
0.0048
591-50-4*500
18.0 NitrosobenzeneC6H5NO (g)c1ccc(cc1)N=O215.4198.4± 1.5kJ/mol107.1100 ±
0.0048
586-96-9*0
17.4 PhenylC6H5 (g)c1cccc[c]1350.37337.08± 0.57kJ/mol77.1039 ±
0.0048
2396-01-2*0
13.6 ChlorobenzeneC6H5Cl (g)c1ccc(cc1)Cl67.1352.18± 0.61kJ/mol112.5566 ±
0.0049
108-90-7*0

Most Influential reactions involving C6H5Br (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.9794000.1 C6H5Br (g) → [C6H5Br]+ (g) ΔrH°(0 K) = 72570 ± 5 cm-1Kwon 2002
0.5874015.1 C6H5Br (cr,l) → C6H5Br (g) ΔrH°(298.15 K) = 44.54 ± 0.22 kJ/molMajer 1985, Wadso 1968
0.3154015.3 C6H5Br (cr,l) → C6H5Br (g) ΔrH°(298.15 K) = 44.84 ± 0.30 kJ/molBasarova 1991, Boublik 1984
0.1434012.2 C6H5Br (g) → [C6H5]+ (g) Br (g) ΔrH°(0 K) = 11.827 ± 0.030 eVStevens 2009
0.1334022.2 C6H5Br (g) I (g) → C6H5I (g) Br (g) ΔrH°(0 K) = 0.649 ± 0.032 eVStevens 2009
0.1184012.1 C6H5Br (g) → [C6H5]+ (g) Br (g) ΔrH°(0 K) = 11.781 ± 0.029 (×1.139) eVStevens 2009
0.0904015.2 C6H5Br (cr,l) → C6H5Br (g) ΔrH°(298.15 K) = 44.79 ± 0.56 kJ/molThermoData 2004
0.0854022.1 C6H5Br (g) I (g) → C6H5I (g) Br (g) ΔrH°(0 K) = 0.608 ± 0.040 eVStevens 2009
0.0744011.1 C6H5Cl (g) Br (g) → C6H5Br (g) Cl (g) ΔrH°(0 K) = 0.647 ± 0.049 eVStevens 2009
0.0574012.5 C6H5Br (g) → [C6H5]+ (g) Br (g) ΔrH°(0 K) = 273.5 ± 1 (×1.091) kcal/molPratt 1981
0.0374011.2 C6H5Cl (g) Br (g) → C6H5Br (g) Cl (g) ΔrH°(0 K) = 0.647 ± 0.069 eVStevens 2009
0.0304012.7 C6H5Br (g) → [C6H5]+ (g) Br (g) ΔrH°(0 K) = 11.75 ± 0.05 (×1.297) eVSergeev 1970
0.0293999.3 C6H5Br (g) → 6 C (g) + 5 H (g) Br (g) ΔrH°(0 K) = 1277.61 ± 1.72 kcal/molRuscic G3X
0.0253999.2 C6H5Br (g) → 6 C (g) + 5 H (g) Br (g) ΔrH°(0 K) = 1277.64 ± 1.84 kcal/molRuscic G3
0.0253999.1 C6H5Br (g) → 6 C (g) + 5 H (g) Br (g) ΔrH°(0 K) = 1277.38 ± 1.86 kcal/molRuscic G3B3
0.0184012.6 C6H5Br (g) → [C6H5]+ (g) Br (g) ΔrH°(0 K) = 11.73 ± 0.05 (×1.682) eVMalinovich 1985
0.0094000.2 C6H5Br (g) → [C6H5Br]+ (g) ΔrH°(0 K) = 8.991 ± 0.002 (×3.221) eVHolland 2000
0.0034014.3 C6H5Br (g) → C6H5 (g) Br (g) ΔrH°(1080 K) = 78.1 ± 5 kcal/molRodgers 1967, Ladacki 1953, est unc
0.0014037.1 C6H5Br (g) [C6H5F]+ (g) → [C6H5Br]+ (g) C6H5F (g) ΔrH°(350 K) = -4.95 ± 0.5 kcal/molLias 1978, 2nd Law, est unc
0.0004000.7 C6H5Br (g) → [C6H5Br]+ (g) ΔrH°(0 K) = 8.98 ± 0.02 eVWatanabe 1962


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122b of the Thermochemical Network (2016); available at ATcT.anl.gov
4   B. Ruscic,
Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry.
J. Phys. Chem. A 119, 7810-7837 (2015) [DOI: 10.1021/acs.jpca.5b01346]
5   S. J. Klippenstein, L. B. Harding, and B. Ruscic,
Ab initio Computations and Active Thermochemical Tables Hand in Hand: Heats of Formation of Core Combustion Species.
J. Phys. Chem. A 121, 6580-6602 (2017) [DOI: 10.1021/acs.jpca.7b05945]
6   T. L. Nguyen, J. H. Baraban, B. Ruscic, and J. F. Stanton,
On the HCN – HNC Energy Difference.
J. Phys. Chem. A 119, 10929-10934 (2015) [DOI: 10.1021/acs.jpca.5b08406]
7   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.