Selected ATcT [1, 2] enthalpy of formation based on version 1.122b of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122 [4][5] to include the best possible isomerization of HCN and HNC [6].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
PhenylC6H5 (g)c1cccc[c]1350.37337.08± 0.57kJ/mol77.1039 ±
0.0048
2396-01-2*0

Representative Geometry of C6H5 (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of C6H5 (g)

The 20 contributors listed below account only for 75.7% of the provenance of ΔfH° of C6H5 (g).
A total of 55 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
31.93926.1 [C6H5]- (g) → C6H5 (g) ΔrH°(0 K) = 1.096 ± 0.006 eVGunion 1992
5.53936.9 C6H5 (g) CH4 (g) → C6H6 (g) CH3 (g) ΔrG°(710 K) = -26.4 ± 2 kJ/molHeckmann 1996, Zhang 1989, 3rd Law, est unc
5.21161.1 [NH2]- (g) → NH2 (g) ΔrH°(0 K) = 0.771 ± 0.005 eVWickham-Jones 1989
4.33924.10 C6H5 (g) → 6 C (g) + 5 H (g) ΔrH°(0 K) = 1195.15 ± 0.60 kcal/molKarton 2009a
3.53932.13 C6H6 (g) → C6H5 (g) H (g) ΔrH°(0 K) = 111.02 ± 0.60 kcal/molKarton 2009a
3.53923.5 C6H6 (cr,l) + 15/2 O2 (g) → 6 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -780.97 ± 0.09 kcal/molCoops 1947, Coops 1946
2.83923.7 C6H6 (cr,l) + 15/2 O2 (g) → 6 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -780.92 ± 0.10 kcal/molGood 1969
2.83923.1 C6H6 (cr,l) + 15/2 O2 (g) → 6 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -780.98 ± 0.10 kcal/molProsen 1945a, as quoted by Cox 1970
2.43936.10 C6H5 (g) CH4 (g) → C6H6 (g) CH3 (g) ΔrH°(710 K) = -30.2 ± 3 kJ/molHeckmann 1996, Zhang 1989, 2nd Law, est unc
1.83941.1 C6H6 (g) [NH2]- (g) → [C6H5]- (g) NH3 (g) ΔrG°(300 K) = -3.557 ± 0.047 kcal/molDavico 1995
1.63924.11 C6H5 (g) → 6 C (g) + 5 H (g) ΔrH°(0 K) = 4995.9 ± 4 kJ/molLau 2006
1.43930.5 C6H6 (g) Cl (g) → C6H5 (g) HCl (g) ΔrG°(296 K) = 27.54 ± 3.87 kJ/molSokolov 1998, Alecu 2007, 3rd Law
1.33936.6 C6H5 (g) CH4 (g) → C6H6 (g) CH3 (g) ΔrH°(0 K) = -34.5 ± 4 kJ/molHemelsoet 2006
1.31161.4 [NH2]- (g) → NH2 (g) ΔrH°(0 K) = 0.768 ± 0.010 eVRadisic 2002
1.13930.2 C6H6 (g) Cl (g) → C6H5 (g) HCl (g) ΔrH°(525 K) = 36.80 ± 4.24 (×1.022) kJ/molAlecu 2007, Sokolov 1998, 2nd Law
1.01168.4 [NH2]- (g) H2 (g) → H- (g) NH3 (g) ΔrG°(296 K) = -1.916 ± 0.272 kcal/molBohme 1973, MacKay 1976, note unc2
0.83930.3 C6H6 (g) Cl (g) → C6H5 (g) HCl (g) ΔrG°(298.15 K) = 26.93 ± 5.01 kJ/molAlecu 2007, Sokolov 1998, 3rd Law
0.83925.14 C6H5 (g) → [C6H5]+ (g) ΔrH°(0 K) = 8.261 ± 0.035 eVLau 2006
0.8117.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
0.83924.9 C6H5 (g) → 6 C (g) + 5 H (g) ΔrH°(0 K) = 1195.02 ± 1.39 kcal/molKarton 2009a

Top 10 species with enthalpies of formation correlated to the ΔfH° of C6H5 (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
56.1 Phenide[C6H5]- (g)c1cccc[c-]1244.70231.79± 0.43kJ/mol77.1044 ±
0.0048
30922-78-2*0
38.2 BenzeneC6H6 (g)c1ccccc1100.6283.11± 0.25kJ/mol78.1118 ±
0.0048
71-43-2*0
38.2 Benzene cation[C6H6]+ (g)c1ccc(cc1)[H+]992.51976.04± 0.25kJ/mol78.1113 ±
0.0048
34504-50-2*0
38.2 BenzeneC6H6 (cr,l)c1ccccc150.7249.17± 0.25kJ/mol78.1118 ±
0.0048
71-43-2*500
36.1 Amide[NH2]- (g)[NH2+]114.88112.00± 0.33kJ/mol16.02317 ±
0.00016
17655-31-1*0
28.9 NitrosobenzeneC6H5NO (g)c1ccc(cc1)N=O215.4198.4± 1.5kJ/mol107.1100 ±
0.0048
586-96-9*0
28.3 Phenylium[C6H5]+ (g)c1cccc[c+]11148.471136.57± 0.89kJ/mol77.1034 ±
0.0048
17333-73-2*0
28.3 Phenylium[C6H5]+ (g, singlet)c1cccc[c+]11148.471136.57± 0.89kJ/mol77.1034 ±
0.0048
17333-73-2*2
26.3 IodobenzeneC6H5I (g)c1ccc(cc1)I177.6161.6± 1.0kJ/mol204.0084 ±
0.0048
591-50-4*0
26.3 Iodobenzene cation[C6H5I]+ (g)c1ccc(cc1)[I+]1022.61007.1± 1.0kJ/mol204.0078 ±
0.0048
38406-85-8*0

Most Influential reactions involving C6H5 (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.6913926.1 [C6H5]- (g) → C6H5 (g) ΔrH°(0 K) = 1.096 ± 0.006 eVGunion 1992
0.4414039.2 C6H5NO (g) → C6H5 (g) NO (g) ΔrG°(391 K) = 39.48 ± 0.5 kcal/molPark 1997, Yu 1994a, 3rd Law
0.0914039.4 C6H5NO (g) → C6H5 (g) NO (g) ΔrG°(525 K) = 33.43 ± 1.1 kcal/molPark 1997, Yu 1994a, 3rd Law
0.0723925.14 C6H5 (g) → [C6H5]+ (g) ΔrH°(0 K) = 8.261 ± 0.035 eVLau 2006


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122b of the Thermochemical Network (2016); available at ATcT.anl.gov
4   B. Ruscic,
Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry.
J. Phys. Chem. A 119, 7810-7837 (2015) [DOI: 10.1021/acs.jpca.5b01346]
5   S. J. Klippenstein, L. B. Harding, and B. Ruscic,
Ab initio Computations and Active Thermochemical Tables Hand in Hand: Heats of Formation of Core Combustion Species.
J. Phys. Chem. A 121, 6580-6602 (2017) [DOI: 10.1021/acs.jpca.7b05945]
6   T. L. Nguyen, J. H. Baraban, B. Ruscic, and J. F. Stanton,
On the HCN – HNC Energy Difference.
J. Phys. Chem. A 119, 10929-10934 (2015) [DOI: 10.1021/acs.jpca.5b08406]
7   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.