Selected ATcT [1, 2] enthalpy of formation based on version 1.122b of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122 [4][5] to include the best possible isomerization of HCN and HNC [6].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
Carbon dioxideCO2 (g)C(=O)=O-393.109-393.475± 0.015kJ/mol44.00950 ±
0.00100
124-38-9*0

Representative Geometry of CO2 (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of CO2 (g)

The 7 contributors listed below account for 90.2% of the provenance of ΔfH° of CO2 (g).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
35.41519.7 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.464 ± 0.024 kJ/molHawtin 1966, note CO2e
14.11519.5 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.468 ± 0.038 kJ/molFraser 1952, note CO2f
14.11519.4 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.462 ± 0.038 kJ/molLewis 1965, note CO2d
9.61519.9 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -94.051 ± 0.011 kcal/molProsen 1944a, Cox 1970, NBS TN270, NBS Tables 1989
6.51519.6 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.462 ± 0.056 kJ/molHawtin 1966, note CO2e
5.31519.2 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.498 ± 0.062 kJ/molDewey 1938, note CO2, Rossini 1938, note CO2c
4.91519.3 C (graphite) O2 (g) → CO2 (g) ΔrH°(303.15 K) = -393.447 ± 0.064 kJ/molJessup 1938, note CO2a, Rossini 1938, note CO2c

Top 10 species with enthalpies of formation correlated to the ΔfH° of CO2 (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
86.0 Carbon dioxide cation[CO2]+ (g)[C+](=O)=O936.092936.927± 0.017kJ/mol44.00895 ±
0.00100
12181-61-2*0
42.5 Succinic acid(CH2COOH)2 (cr,l)OC(=O)CCC(=O)O-918.55-940.28± 0.13kJ/mol118.0880 ±
0.0034
110-15-6*500
35.4 Carbon monoxideCO (g)[C-]#[O+]-113.803-110.523± 0.026kJ/mol28.01010 ±
0.00085
630-08-0*0
35.4 Carbon monoxideCO (g, singlet)[C-]#[O+]-113.803-110.523± 0.026kJ/mol28.01010 ±
0.00085
630-08-0*2
35.4 Carbon monoxideCO (g, triplet)[C-]#[O+]465.579469.286± 0.026kJ/mol28.01010 ±
0.00085
630-08-0*1
35.1 Carbon monoxide cation[CO]+ (g)[C]#[O+]1238.3071241.586± 0.026kJ/mol28.00955 ±
0.00085
12144-04-6*0
32.9 BenzeneC6H6 (cr,l)c1ccccc150.7249.17± 0.25kJ/mol78.1118 ±
0.0048
71-43-2*500
32.9 BenzeneC6H6 (g)c1ccccc1100.6283.11± 0.25kJ/mol78.1118 ±
0.0048
71-43-2*0
32.9 Benzene cation[C6H6]+ (g)c1ccc(cc1)[H+]992.51976.04± 0.25kJ/mol78.1113 ±
0.0048
34504-50-2*0
26.8 TolueneC6H5CH3 (l)c1ccc(cc1)C19.9912.23± 0.36kJ/mol92.1384 ±
0.0056
108-88-3*500

Most Influential reactions involving CO2 (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
1.0003893.1 ICH2CH2OH (l) + 11/2 O2 (g) → 4 CO2 (g) + 5 H2O (cr,l) I2 (cr,l) ΔrH°(298.15 K) = -2588.56 ± 4.8 kJ/molBernardes 2007
1.0004082.1 C2HF3 (g) + 3 O2 (g) + 2 H2O (cr,l) → 4 CO2 (g) + 6 HF (aq, 22 H2O) ΔrH°(298.15 K) = -466.80 ± 4.00 kcal/molKolesov 1962, as quoted by Pedley 1986
1.0004077.1 (CH3)2CHCH2C(CH3)3 (l) + 25/2 O2 (g) → 8 CO2 (g) + 9 H2O (cr,l) ΔrH°(298.15 K) = -1305.30 ± 0.35 kcal/molProsen 1945b, as quoted by Pedley 1986
0.9982153.1 H2CO (cr, polyoxymethylene) O2 (g) → CO2 (g) H2O (cr,l) ΔrH°(298.15 K) = -121.518 ± 0.048 kcal/molParks 1963, note std dev, mw conversion
0.9963370.1 CI4 (cr, monoclinic) O2 (g) → CO2 (g) + 2 I2 (cr,l) ΔrH°(298.15 K) = -786.4 ± 8.0 kJ/molCarson 1993
0.9964087.1 (CHCH)CHCH2CH(CHCH) (l) + 9 O2 (g) → 7 CO2 (g) + 4 H2O (cr,l) ΔrH°(298.15 K) = -974.35 ± 0.24 kcal/molHall 1973, as quoted by Cox 1970
0.9943216.1 (COOH)2 (cr) + 1/2 O2 (g) → 2 CO2 (g) H2O (cr,l) ΔrH°(298.15 K) = -60.59 ± 0.11 kcal/molVerkade 1926, as quoted by Cox 1970
0.9814111.1 (CIH2)2 (cr,l) + 3 O2 (g) → 2 CO2 (g) + 2 H2O (cr,l) I2 (cr,l) ΔrH°(298.15 K) = -1368.0 ± 0.6 kJ/molCarson 1994, as quoted by NIST WebBook
0.9763317.1 H2NCN (cr) + 3/2 O2 (g) → CO2 (g) H2O (cr,l) N2 (g) ΔrH°(298.15 K) = -176.42 ± 0.13 kcal/molSalley 1948, as quoted by Cox 1970
0.9713187.1 HC(O)OCH3 (l) + 2 O2 (g) → 2 CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -232.46 ± 0.14 kcal/molHall 1971, as quoted by Pedley 1986
0.9692564.1 CH3CH(CH2CH2) (l) + 6 O2 (g) → 4 CO2 (g) + 4 H2O (l) ΔrH°(298.15 K) = -649.87 ± 0.14 kcal/molGood 1971
0.9574099.1 (CH2COOH)2(NH3)2 (cr) + 5 O2 (g) → 4 CO2 (g) + 6 H2O (cr,l) N2 (g) ΔrH°(298.15 K) = -503.411 ± 0.110 kcal/molVanderzee 1972c
0.9013226.1 (CH3)3N (l) + 21/2 O2 (g) → 6 CO2 (g) + 9 H2O (cr,l) N2 (g) ΔrH°(298.15 K) = -1157.28 ± 0.30 kcal/molJaffe 1970, Cox 1970, as quoted by Cox 1970
0.8914098.1 (CH2COOH)2(NH3) (cr) + 17/2 O2 (g) → 8 CO2 (g) + 9 H2O (cr,l) N2 (g) ΔrH°(298.15 K) = -856.796 ± 0.357 kcal/molVanderzee 1972c
0.8672653.1 CH2CHCH2CH2CHCH2 (cr,l) + 17/2 O2 (g) → 5 H2O (cr,l) + 6 CO2 (g) ΔrH°(298.15 K) = -918.81 ± 0.07 kcal/molCoops 1946, Cox 1970
0.8662901.1 CH3OCH3 (g) + 3 O2 (g) → 2 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -349.06 ± 0.11 kcal/molPilcher 1964, as quoted by Cox 1970
0.7953892.1 BrCH2CH2OH (l) + 5/2 O2 (g) → 2 CO2 (g) + 2 H2O (cr,l) HBr (aq, 600 H2O) ΔrH°(298.15 K) = -1203.84 ± 0.5 kJ/molBernardes 2007
0.7923882.1 ClCH2CH2OH (l) + 5/2 O2 (g) → 2 CO2 (g) + 2 H2O (cr,l) HCl (aq, 600 H2O) ΔrH°(298.15 K) = -1209.83 ± 0.6 kJ/molBernardes 2007
0.7831525.1 CO2 (g) → [CO2]+ (g) ΔrH°(0 K) = 111112.3 ± 0.8 cm-1Rupper 2004
0.7493096.2 CH3CH2CH2OH (cr,l) + 9/2 O2 (g) → 3 CO2 (g) + 4 H2O (cr,l) ΔrH°(298.15 K) = -2021.17 ± 0.25 kJ/molDekker 1970, mw conversion


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122b of the Thermochemical Network (2016); available at ATcT.anl.gov
4   B. Ruscic,
Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry.
J. Phys. Chem. A 119, 7810-7837 (2015) [DOI: 10.1021/acs.jpca.5b01346]
5   S. J. Klippenstein, L. B. Harding, and B. Ruscic,
Ab initio Computations and Active Thermochemical Tables Hand in Hand: Heats of Formation of Core Combustion Species.
J. Phys. Chem. A 121, 6580-6602 (2017) [DOI: 10.1021/acs.jpca.7b05945]
6   T. L. Nguyen, J. H. Baraban, B. Ruscic, and J. F. Stanton,
On the HCN – HNC Energy Difference.
J. Phys. Chem. A 119, 10929-10934 (2015) [DOI: 10.1021/acs.jpca.5b08406]
7   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.