Selected ATcT [1, 2] enthalpy of formation based on version 1.122 of the Thermochemical Network [3]

This version of ATcT results was partially described in Ruscic et al. [4], and was also used for the initial development of high-accuracy ANLn composite electronic structure methods [5].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
Methyl chlorideCH3Cl (g)CCl-74.25-82.18± 0.25kJ/mol50.4872 ±
0.0012
74-87-3*0

Representative Geometry of CH3Cl (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of CH3Cl (g)

The 20 contributors listed below account only for 45.7% of the provenance of ΔfH° of CH3Cl (g).
A total of 299 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
12.03388.1 CH3Cl (g) + 3/2 O2 (g) → CO2 (g) H2O (cr,l) HCl (aq, 600 H2O) ΔrH°(298.15 K) = -764.00 ± 0.50 (×1.414) kJ/molFletcher 1971
6.63405.1 CH3Br (g) → [CH3]+ (g) Br (g) ΔrH°(0 K) = 12.834 ± 0.002 (×4.088) eVSong 2001
3.13408.1 CH3Br (g) H2 (g) → CH4 (g) HBr (g) ΔrH°(523.15 K) = -18.062 ± 0.321 kcal/molFowell 1965
2.63392.10 CH3Cl (g) H (g) → CH4 (g) Cl (g) ΔrH°(0 K) = -7296 ± 100 (×1.215) cm-1Czako 2012
2.13385.5 CH3Cl (g) → C (g) + 3 H (g) Cl (g) ΔrH°(0 K) = 371.34 ± 0.4 kcal/molFeller 2008
2.03420.4 CH3Br (g) → CBr4 (g) + 3 CH4 (g) ΔrH°(0 K) = 2.77 ± 1.0 kcal/molRuscic G4
1.81642.1 H2 (g) C (graphite) → CH4 (g) ΔrG°(1165 K) = 37.521 ± 0.068 kJ/molSmith 1946, note COf, 3rd Law
1.73613.1 CH3Cl (g) → CCl3H (g) + 2 CH4 (g) ΔrH°(0 K) = -2.71 ± 1.2 kcal/molRuscic G3B3
1.73420.3 CH3Br (g) → CBr4 (g) + 3 CH4 (g) ΔrH°(0 K) = 2.69 ± 1.1 kcal/molRuscic G3X
1.63613.2 CH3Cl (g) → CCl3H (g) + 2 CH4 (g) ΔrH°(0 K) = -3.16 ± 1.2 (×1.022) kcal/molRuscic G3
1.53424.1 CH3Br (l) H2 (g) → 2 CH4 (g) Br2 (cr,l) ΔrH°(298.15 K) = -6.60 ± 0.60 (×1.297) kcal/molAdams 1966, as quoted by Cox 1970
1.23421.2 CH3Br (g) CF4 (g) → 4 CH3F (g) CBr4 (g) ΔrH°(0 K) = 54.31 ± 1.0 kcal/molRuscic G4
1.13405.3 CH3Br (g) → [CH3]+ (g) Br (g) ΔrH°(0 K) = 12.82 ± 0.02 eVTraeger 1981, AE corr, note unc2
1.03421.1 CH3Br (g) CF4 (g) → 4 CH3F (g) CBr4 (g) ΔrH°(0 K) = 54.25 ± 1.1 kcal/molRuscic G3X
0.93392.9 CH3Cl (g) H (g) → CH4 (g) Cl (g) ΔrH°(0 K) = -21.11 ± 0.6 kcal/molFeller 2008, note unc2
0.83439.2 CH3I (g) CCl4 (g) → 4 CH3Cl (g) CI4 (g) ΔrH°(0 K) = 7.34 ± 1.1 (×2.089) kcal/molRuscic unpub
0.83439.3 CH3I (g) CCl4 (g) → 4 CH3Cl (g) CI4 (g) ΔrH°(0 K) = 7.32 ± 1.2 (×1.915) kcal/molRuscic unpub
0.83582.1 CH4 (g) CH2Cl2 (g) → 2 CH3Cl (g) ΔrH°(0 K) = 1.58 ± 1.2 kcal/molRuscic G3B3
0.83582.2 CH4 (g) CH2Cl2 (g) → 2 CH3Cl (g) ΔrH°(0 K) = 1.76 ± 1.2 kcal/molRuscic G3
0.73407.3 CH3Br (g) HBr (g) → Br2 (g) CH4 (g) ΔrG°(712.2 K) = 35.8 ± 1.6 (×1.242) kJ/molFerguson 1973, 3rd Law

Top 10 species with enthalpies of formation correlated to the ΔfH° of CH3Cl (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
99.5 Methyl chloride cation[CH3Cl]+ (g)C[Cl+]1015.031007.58± 0.25kJ/mol50.4867 ±
0.0012
12538-71-5*0
99.1 Methyl chlorideCH3Cl (l)CCl-106.05-102.08± 0.25kJ/mol50.4872 ±
0.0012
74-87-3*590
81.7 Methyl bromideCH3Br (g)CBr-20.36-35.76± 0.27kJ/mol94.9385 ±
0.0013
74-83-9*0
80.5 Methyl bromide cation[CH3Br]+ (g)C[Br+]996.75981.84± 0.27kJ/mol94.9380 ±
0.0013
12538-70-4*0
79.5 Methyl bromideCH3Br (l)CBr-56.08-59.10± 0.27kJ/mol94.9385 ±
0.0013
74-83-9*590
21.6 TetrabromomethaneCBr4 (g)C(Br)(Br)(Br)Br131.5101.8± 1.1kJ/mol331.6267 ±
0.0041
558-13-4*0
-19.4 Hydrogen bromideHBr (aq, 2000 H2O)Br-120.51± 0.16kJ/mol80.9119 ±
0.0010
10035-10-6*841
-19.4 Hydrogen bromideHBr (aq, 2570 H2O)Br-120.55± 0.16kJ/mol80.9119 ±
0.0010
10035-10-6*952
-20.5 Bromoniumyl[HBr]+ (g)[BrH+]1097.861090.01± 0.16kJ/mol80.9114 ±
0.0010
12258-64-9*0
-20.5 Hydrogen bromideHBr (g)Br-27.81-35.66± 0.16kJ/mol80.9119 ±
0.0010
10035-10-6*0

Most Influential reactions involving CH3Cl (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.9863386.1 CH3Cl (g) → [CH3Cl]+ (g) ΔrH°(0 K) = 91057.0 ± 2.0 cm-1Grutter 2011
0.9613409.3 CH3Br (g) HCl (g) → CH3Cl (g) HBr (g) ΔrG°(449.3 K) = 10.036 ± 0.019 kJ/molBak 1948, 3rd Law
0.1563401.10 CH3Cl (l) → CH3Cl (g) ΔrG°(243.750 K) = 0.489 ± 0.083 kJ/molMesserly 1940, 3rd Law, ThermoData 2004
0.1563401.16 CH3Cl (l) → CH3Cl (g) ΔrG°(243.190 K) = 0.543 ± 0.083 kJ/molGaneff 1948, 3rd Law, ThermoData 2004
0.1293401.4 CH3Cl (l) → CH3Cl (g) ΔrG°(231.405 K) = 1.626 ± 0.091 kJ/molThermoData 2004, 3rd Law
0.1233388.1 CH3Cl (g) + 3/2 O2 (g) → CO2 (g) H2O (cr,l) HCl (aq, 600 H2O) ΔrH°(298.15 K) = -764.00 ± 0.50 (×1.414) kJ/molFletcher 1971
0.1213401.14 CH3Cl (l) → CH3Cl (g) ΔrG°(273.130 K) = -2.049 ± 0.094 kJ/molGaneff 1948, 3rd Law, ThermoData 2004
0.1213401.12 CH3Cl (l) → CH3Cl (g) ΔrG°(228.426 K) = 1.879 ± 0.094 kJ/molMesserly 1940, 3rd Law, ThermoData 2004
0.1053799.7 HCCCl (g) CH3Cl (g) → ClCCCl (g) CH4 (g) ΔrH°(0 K) = 2.90 ± 0.9 kcal/molParthiban 2002, est unc
0.1053799.6 HCCCl (g) CH3Cl (g) → ClCCCl (g) CH4 (g) ΔrH°(0 K) = 3.03 ± 0.9 kcal/molParthiban 2002, est unc
0.0853401.2 CH3Cl (l) → CH3Cl (g) ΔrG°(213.995 K) = 3.202 ± 0.112 kJ/molThermoData 2004, 3rd Law
0.0853799.5 HCCCl (g) CH3Cl (g) → ClCCCl (g) CH4 (g) ΔrH°(0 K) = 3.01 ± 1.0 kcal/molParthiban 2002, est unc
0.0833566.2 CHFCl2 (g) + 2 H (g) → CH3Cl (g) Cl (g) F (g) ΔrH°(0 K) = -31.20 ± 4.2 kJ/molCsontos 2010
0.0793798.6 HCCH (g) CH3Cl (g) → HCCCl (g) CH4 (g) ΔrH°(0 K) = 2.24 ± 0.9 kcal/molParthiban 2002, est unc
0.0793798.7 HCCH (g) CH3Cl (g) → HCCCl (g) CH4 (g) ΔrH°(0 K) = 2.12 ± 0.9 kcal/molParthiban 2002, est unc
0.0692073.2 ICN (g) CH3Cl (g) → ClCN (g) CH3I (g) ΔrH°(0 K) = 2.85 ± 0.9 kcal/molRuscic unpub
0.0673422.2 CH3Br (g) CCl4 (g) → 4 CH3Cl (g) CBr4 (g) ΔrH°(0 K) = 3.39 ± 1.0 (×1.044) kcal/molRuscic G4
0.0643798.5 HCCH (g) CH3Cl (g) → HCCCl (g) CH4 (g) ΔrH°(0 K) = 2.21 ± 1.0 kcal/molParthiban 2002, est unc
0.0593880.3 ClCH2CH2OH (g) CH3F (g) → FCH2CH2OH (g) CH3Cl (g) ΔrH°(0 K) = -0.77 ± 1.1 kcal/molRuscic G3X
0.0593799.1 HCCCl (g) CH3Cl (g) → ClCCCl (g) CH4 (g) ΔrH°(0 K) = 1.59 ± 1.2 kcal/molRuscic G3B3


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122 of the Thermochemical Network (2016); available at ATcT.anl.gov
4   B. Ruscic,
Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry.
J. Phys. Chem. A 119, 7810-7837 (2015) [DOI: 10.1021/acs.jpca.5b01346]
5   S. J. Klippenstein, L. B. Harding, and B. Ruscic,
Ab initio Computations and Active Thermochemical Tables Hand in Hand: Heats of Formation of Core Combustion Species.
J. Phys. Chem. A 121, 6580-6602 (2017) [DOI: 10.1021/acs.jpca.7b05945]
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.