Selected ATcT [1, 2] enthalpy of formation based on version 1.122 of the Thermochemical Network [3]

This version of ATcT results was partially described in Ruscic et al. [4], and was also used for the initial development of high-accuracy ANLn composite electronic structure methods [5].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
Methylium[CH3]+ (g)[CH3+]1099.2431095.299± 0.078kJ/mol15.03397 ±
0.00083
14531-53-4*0

Representative Geometry of [CH3]+ (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of [CH3]+ (g)

The 20 contributors listed below account only for 75.6% of the provenance of ΔfH° of [CH3]+ (g).
A total of 86 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
26.61642.1 H2 (g) C (graphite) → CH4 (g) ΔrG°(1165 K) = 37.521 ± 0.068 kJ/molSmith 1946, note COf, 3rd Law
19.31662.7 CH4 (g) → [CH3]+ (g) H (g) ΔrH°(0 K) = 14.321 ± 0.001 eVBodi 2009a
10.11662.2 CH4 (g) → [CH3]+ (g) H (g) ΔrH°(0 K) = 14.323 ± 0.001 (×1.384) eVWeitzel 1999, Weitzel 2001
2.11662.6 CH4 (g) → [CH3]+ (g) H (g) ΔrH°(0 K) = 14.319 ± 0.003 eVBodi 2009a
2.11662.1 CH4 (g) → [CH3]+ (g) H (g) ΔrH°(0 K) = 14.322 ± 0.003 eVLitorja 1997
2.11662.4 CH4 (g) → [CH3]+ (g) H (g) ΔrH°(0 K) = 14.324 ± 0.003 eVMcCulloh 1976a
1.41641.4 CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -890.61 ± 0.21 kJ/molDale 2002
1.21656.4 CH3 (g) → C (g) + 3 H (g) ΔrH°(0 K) = 1209.50 ± 0.56 kJ/molHarding 2008
1.2117.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
1.21662.3 CH4 (g) → [CH3]+ (g) H (g) ΔrH°(0 K) = 14.320 ± 0.004 eVChupka 1968
1.01655.11 CH3 (g) → C (g) + 3 H (g) ΔrH°(0 K) = 289.08 ± 0.15 kcal/molKarton 2008
0.91641.6 CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -890.44 ± 0.26 kJ/molGOMB Ref Calorimeter, Alexandrov 2002
0.91657.2 CH3 (g) → [CH3]+ (g) ΔrH°(0 K) = 79370.1 ± 3 cm-1Schulenburg 2006, note CH3
0.81656.2 CH3 (g) → C (g) + 3 H (g) ΔrH°(0 K) = 1209.48 ± 0.70 kJ/molHarding 2008
0.71656.3 CH3 (g) → C (g) + 3 H (g) ΔrH°(0 K) = 1209.48 ± 0.74 kJ/molHarding 2008
0.71690.8 CH3 (g) → CH2 (g, triplet) H (g) ΔrH°(0 K) = 457.05 ± 0.56 kJ/molHarding 2008
0.71656.1 CH3 (g) → C (g) + 3 H (g) ΔrH°(0 K) = 1209.93 ± 0.75 kJ/molTajti 2004, est unc
0.71654.9 CH3 (g) → C (g) + 3 H (g) ΔrH°(0 K) = 1209.93 ± 0.75 kJ/molTajti 2004, est unc
0.61688.1 CH3 (g) → [CH2]+ (g) H (g) ΔrH°(0 K) = 15.120 ± 0.006 eVLitorja 1998
0.61663.3 CH3 (g) HCl (g) → CH4 (g) Cl (g) ΔrG°(298.15 K) = 0.85 ± 0.12 (×4) kJ/molDobis 1987, 3rd Law, note unc

Top 10 species with enthalpies of formation correlated to the ΔfH° of [CH3]+ (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
92.7 MethylCH3 (g)[CH3]149.788146.374± 0.080kJ/mol15.03452 ±
0.00083
2229-07-4*0
62.9 MethaneCH4 (g)C-66.550-74.520± 0.057kJ/mol16.04246 ±
0.00085
74-82-8*0
40.8 Methyl iodideCH3I (g)CI24.4814.94± 0.17kJ/mol141.93899 ±
0.00083
74-88-4*0
40.7 Methyl iodide cation[CH3I]+ (g)C[I+]944.77935.37± 0.17kJ/mol141.93844 ±
0.00083
12538-72-6*0
36.5 Methyl iodideCH3I (l)CI-12.20± 0.19kJ/mol141.93899 ±
0.00083
74-88-4*590
22.9 MethyleneCH2 (g)[CH2]390.96391.52± 0.12kJ/mol14.02658 ±
0.00081
2465-56-7*0
22.9 MethyleneCH2 (g, triplet)[CH2]390.96391.52± 0.12kJ/mol14.02658 ±
0.00081
2465-56-7*1
22.4 Carbon atomC (g)[C]711.401716.886± 0.050kJ/mol12.01070 ±
0.00080
7440-44-0*0
22.4 Carbon atomC (g, triplet)[C]711.401716.886± 0.050kJ/mol12.01070 ±
0.00080
7440-44-0*1
22.4 Carbon atomC (g, singlet)[C]833.332838.478± 0.050kJ/mol12.01070 ±
0.00080
7440-44-0*2

Most Influential reactions involving [CH3]+ (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.7071657.2 CH3 (g) → [CH3]+ (g) ΔrH°(0 K) = 79370.1 ± 3 cm-1Schulenburg 2006, note CH3
0.4423427.2 CH3I (g) → [CH3]+ (g) I (g) ΔrH°(0 K) = 12.251 ± 0.0024 eVLee 2007
0.3941662.7 CH4 (g) → [CH3]+ (g) H (g) ΔrH°(0 K) = 14.321 ± 0.001 eVBodi 2009a
0.2823427.1 CH3I (g) → [CH3]+ (g) I (g) ΔrH°(0 K) = 12.248 ± 0.003 eVBodi 2009
0.2291657.1 CH3 (g) → [CH3]+ (g) ΔrH°(0 K) = 79363 ± 3 (×1.756) cm-1Blush 1993, note CH3
0.2061662.2 CH4 (g) → [CH3]+ (g) H (g) ΔrH°(0 K) = 14.323 ± 0.001 (×1.384) eVWeitzel 1999, Weitzel 2001
0.1093405.1 CH3Br (g) → [CH3]+ (g) Br (g) ΔrH°(0 K) = 12.834 ± 0.002 (×4.088) eVSong 2001
0.0431662.6 CH4 (g) → [CH3]+ (g) H (g) ΔrH°(0 K) = 14.319 ± 0.003 eVBodi 2009a
0.0431662.4 CH4 (g) → [CH3]+ (g) H (g) ΔrH°(0 K) = 14.324 ± 0.003 eVMcCulloh 1976a
0.0431662.1 CH4 (g) → [CH3]+ (g) H (g) ΔrH°(0 K) = 14.322 ± 0.003 eVLitorja 1997
0.0393427.3 CH3I (g) → [CH3]+ (g) I (g) ΔrH°(0 K) = 12.243 ± 0.008 eVLee 2007, Bodi 2009
0.0253427.5 CH3I (g) → [CH3]+ (g) I (g) ΔrH°(0 K) = 12.24 ± 0.01 eVMintz 1976
0.0241662.3 CH4 (g) → [CH3]+ (g) H (g) ΔrH°(0 K) = 14.320 ± 0.004 eVChupka 1968
0.0221807.5 [C2H3]+ (g) CH4 (g) → [CH3]+ (g) C2H4 (g) ΔrH°(0 K) = 25.61 ± 0.9 kcal/molRuscic W1RO, Lago 2006
0.0181807.2 [C2H3]+ (g) CH4 (g) → [CH3]+ (g) C2H4 (g) ΔrH°(0 K) = 25.05 ± 1.0 kcal/molRuscic G4
0.0181807.4 [C2H3]+ (g) CH4 (g) → [CH3]+ (g) C2H4 (g) ΔrH°(0 K) = 26.05 ± 1.0 kcal/molRuscic CBS-n
0.0183405.3 CH3Br (g) → [CH3]+ (g) Br (g) ΔrH°(0 K) = 12.82 ± 0.02 eVTraeger 1981, AE corr, note unc2
0.0132119.8 [CH3O]+ (g) → [CH3]+ (g) O (g) ΔrH°(0 K) = 67.81 ± 1.50 kcal/molRuscic W1RO
0.0112119.7 [CH3O]+ (g) → [CH3]+ (g) O (g) ΔrH°(0 K) = 67.43 ± 1.60 kcal/molRuscic CBS-n
0.0112119.4 [CH3O]+ (g) → [CH3]+ (g) O (g) ΔrH°(0 K) = 68.24 ± 1.60 kcal/molRuscic G4


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122 of the Thermochemical Network (2016); available at ATcT.anl.gov
4   B. Ruscic,
Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry.
J. Phys. Chem. A 119, 7810-7837 (2015) [DOI: 10.1021/acs.jpca.5b01346]
5   S. J. Klippenstein, L. B. Harding, and B. Ruscic,
Ab initio Computations and Active Thermochemical Tables Hand in Hand: Heats of Formation of Core Combustion Species.
J. Phys. Chem. A 121, 6580-6602 (2017) [DOI: 10.1021/acs.jpca.7b05945]
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.