Selected ATcT [1, 2] enthalpy of formation based on version 1.122 of the Thermochemical Network [3]

This version of ATcT results was partially described in Ruscic et al. [4], and was also used for the initial development of high-accuracy ANLn composite electronic structure methods [5].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
WaterH2O (cr,l)O-286.300-285.828± 0.027kJ/mol18.01528 ±
0.00033
7732-18-5*500

Top contributors to the provenance of ΔfH° of H2O (cr,l)

The 20 contributors listed below account only for 68.6% of the provenance of ΔfH° of H2O (cr,l).
A total of 195 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
43.4117.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
3.51641.4 CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -890.61 ± 0.21 kJ/molDale 2002
3.31642.1 H2 (g) C (graphite) → CH4 (g) ΔrG°(1165 K) = 37.521 ± 0.068 kJ/molSmith 1946, note COf, 3rd Law
2.3159.1 [OH]- (g) → O- (g) H (g) ΔrH°(0 K) = 4.7796 ± 0.0010 (×1.795) eVMartin 2001, est unc
2.31641.6 CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -890.44 ± 0.26 kJ/molGOMB Ref Calorimeter, Alexandrov 2002
2.01208.1 N2 (g) + 3 H2O (cr,l) + 2 H+ (aq) → 3/2 O2 (g) + 2 [NH4]+ (aq) ΔrH°(298.15 K) = 141.292 ± 0.119 kcal/molVanderzee 1972c
1.31722.1 C2H6 (g) + 7/2 O2 (g) → 2 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -1560.68 ± 0.25 kJ/molPittam 1972
1.21641.5 CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -890.43 ± 0.35 kJ/molAlexandrov 2002a, Alexandrov 2002
1.21641.1 CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (cr,l) ΔrH°(303.15 K) = -889.849 ± 0.350 kJ/molRossini 1931a, Rossini 1931b, Prosen 1945, Rossini 1940, note CH4
0.91572.3 CO (g) H2O (g) → CO2 (g) H2 (g) ΔrG°(893 K) = -6.369 ± 0.283 kJ/molMeyer 1938, note COi, 3rd Law
0.91565.2 CO (g) → C+ (g) O (g) ΔrH°(0 K) = 22.3713 ± 0.0015 eVNg 2007
0.81641.2 CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -890.699 ± 0.430 kJ/molPittam 1972, note CH4a
0.7212.4 H2O2 (g) → 2 H (g) + 2 O (g) ΔrH°(0 K) = 1054.84 ± 0.56 kJ/molHarding 2008
0.71043.4 NNO (g) CO (g) → CO2 (g) N2 (g) ΔrH°(293.15 K) = -365.642 ± 0.243 kJ/molFenning 1933, note N2Oa
0.7225.3 H2O2 (cr,l) → H2O (cr,l) + 1/2 O2 (g) ΔrH°(293.15 K) = -23.48 ± 0.03 (×2) kcal/molRoth 1930, est unc
0.6117.3 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(303.4 K) = -285.67 ± 0.32 kJ/molKing 1968, note H2Ob
0.5143.3 OH (g) → O (g) H (g) ΔrH°(0 K) = 35565 ± 30 cm-1Zhou 2003
0.51204.3 (NH4)NO3 (cr,l) → N2 (g) + 1/2 O2 (g) + 2 H2O (cr,l) ΔrH°(293.65 K) = -49.44 ± 0.06 kcal/molBecker 1934
0.5229.1 H2O2 (g) → 2 OH (g) ΔrH°(0 K) = 17051.8 ± 3.4 cm-1Luo 1992
0.5225.4 H2O2 (cr,l) → H2O (cr,l) + 1/2 O2 (g) ΔrH°(293.15 K) = -23.47 ± 0.02 (×3.513) kcal/molMatheson 1929, est unc

Top 10 species with enthalpies of formation correlated to the ΔfH° of H2O (cr,l)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
100.0 WaterH2O (l)O-285.828± 0.027kJ/mol18.01528 ±
0.00033
7732-18-5*590
100.0 WaterH2O (g, ortho)O-238.646-241.834± 0.027kJ/mol18.01528 ±
0.00033
7732-18-5*1
100.0 WaterH2O (g, para)O-238.931-241.834± 0.027kJ/mol18.01528 ±
0.00033
7732-18-5*2
100.0 WaterH2O (g)O-238.931-241.834± 0.027kJ/mol18.01528 ±
0.00033
7732-18-5*0
100.0 WaterH2O (cr, l, eq.press.)O-286.302-285.830± 0.027kJ/mol18.01528 ±
0.00033
7732-18-5*499
100.0 WaterH2O (l, eq.press.)O-285.830± 0.027kJ/mol18.01528 ±
0.00033
7732-18-5*589
100.0 Oxonium[H3O]+ (aq)[OH3+]-285.828± 0.027kJ/mol19.02267 ±
0.00037
13968-08-6*800
99.9 WaterH2O (cr)O-286.300-292.741± 0.027kJ/mol18.01528 ±
0.00033
7732-18-5*510
99.9 WaterH2O (cr, eq.press.)O-286.302-292.743± 0.027kJ/mol18.01528 ±
0.00033
7732-18-5*509
99.9 HydroxylOH (g)[OH]37.25037.490± 0.027kJ/mol17.00734 ±
0.00031
3352-57-6*0

Most Influential reactions involving H2O (cr,l)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
1.0001453.1 HNO3(H2O) (cr,l) → HNO3 (aq, 1 H2O) H2O (cr,l) ΔrH°(298.15 K) = 0 ± 0 kJ/moltriv
1.0004082.1 C2HF3 (g) + 3 O2 (g) + 2 H2O (cr,l) → 4 CO2 (g) + 6 HF (aq, 22 H2O) ΔrH°(298.15 K) = -466.80 ± 4.00 kcal/molKolesov 1962, as quoted by Pedley 1986
1.0003893.1 ICH2CH2OH (l) + 11/2 O2 (g) → 4 CO2 (g) + 5 H2O (cr,l) I2 (cr,l) ΔrH°(298.15 K) = -2588.56 ± 4.8 kJ/molBernardes 2007
1.0004077.1 (CH3)2CHCH2C(CH3)3 (l) + 25/2 O2 (g) → 8 CO2 (g) + 9 H2O (cr,l) ΔrH°(298.15 K) = -1305.30 ± 0.35 kcal/molProsen 1945b, as quoted by Pedley 1986
1.000206.1 H+ (aq) H2O (cr,l) → [H3O]+ (aq) ΔrH°(298.15 K) = 0.000 ± 0.000 kJ/moltriv
1.0001200.1 NH3 (aq, undissoc) H2O (cr,l) → NH4OH (aq, undissoc) ΔrH°(298.15 K) = 0.000 ± 0.000 kJ/moltriv
1.0001452.1 HNO3(H2O)3 (cr,l) → HNO3 (aq, 3 H2O) + 3 H2O (cr,l) ΔrH°(298.15 K) = 0 ± 0 kJ/moltriv
1.000128.1 H2O (l) → H2O (cr,l) ΔrH°(298.15 K) = 0.0 ± 0.0 cm-1triv
0.9982153.1 H2CO (cr, polyoxymethylene) O2 (g) → CO2 (g) H2O (cr,l) ΔrH°(298.15 K) = -121.518 ± 0.048 kcal/molParks 1963, note std dev, mw conversion
0.9961223.1 H2NNH2 (cr,l) H2O (cr,l) → (H2NNH2)(H2O) (l) ΔrH°(298.15 K) = -1.797 ± 0.005 kcal/molBushnell 1937, est unc
0.9964087.1 (CHCH)CHCH2CH(CHCH) (l) + 9 O2 (g) → 7 CO2 (g) + 4 H2O (cr,l) ΔrH°(298.15 K) = -974.35 ± 0.24 kcal/molHall 1973, as quoted by Cox 1970
0.9943216.1 (COOH)2 (cr) + 1/2 O2 (g) → 2 CO2 (g) H2O (cr,l) ΔrH°(298.15 K) = -60.59 ± 0.11 kcal/molVerkade 1926, as quoted by Cox 1970
0.9814111.1 (CIH2)2 (cr,l) + 3 O2 (g) → 2 CO2 (g) + 2 H2O (cr,l) I2 (cr,l) ΔrH°(298.15 K) = -1368.0 ± 0.6 kJ/molCarson 1994, as quoted by NIST WebBook
0.9763317.1 H2NCN (cr) + 3/2 O2 (g) → CO2 (g) H2O (cr,l) N2 (g) ΔrH°(298.15 K) = -176.42 ± 0.13 kcal/molSalley 1948, as quoted by Cox 1970
0.9713187.1 HC(O)OCH3 (l) + 2 O2 (g) → 2 CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -232.46 ± 0.14 kcal/molHall 1971, as quoted by Pedley 1986
0.9574099.1 (CH2COOH)2(NH3)2 (cr) + 5 O2 (g) → 4 CO2 (g) + 6 H2O (cr,l) N2 (g) ΔrH°(298.15 K) = -503.411 ± 0.110 kcal/molVanderzee 1972c
0.9013226.1 (CH3)3N (l) + 21/2 O2 (g) → 6 CO2 (g) + 9 H2O (cr,l) N2 (g) ΔrH°(298.15 K) = -1157.28 ± 0.30 kcal/molJaffe 1970, Cox 1970, as quoted by Cox 1970
0.8914098.1 (CH2COOH)2(NH3) (cr) + 17/2 O2 (g) → 8 CO2 (g) + 9 H2O (cr,l) N2 (g) ΔrH°(298.15 K) = -856.796 ± 0.357 kcal/molVanderzee 1972c
0.8672653.1 CH2CHCH2CH2CHCH2 (cr,l) + 17/2 O2 (g) → 5 H2O (cr,l) + 6 CO2 (g) ΔrH°(298.15 K) = -918.81 ± 0.07 kcal/molCoops 1946, Cox 1970
0.8662901.1 CH3OCH3 (g) + 3 O2 (g) → 2 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -349.06 ± 0.11 kcal/molPilcher 1964, as quoted by Cox 1970


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122 of the Thermochemical Network (2016); available at ATcT.anl.gov
4   B. Ruscic,
Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry.
J. Phys. Chem. A 119, 7810-7837 (2015) [DOI: 10.1021/acs.jpca.5b01346]
5   S. J. Klippenstein, L. B. Harding, and B. Ruscic,
Ab initio Computations and Active Thermochemical Tables Hand in Hand: Heats of Formation of Core Combustion Species.
J. Phys. Chem. A 121, 6580-6602 (2017) [DOI: 10.1021/acs.jpca.7b05945]
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.