Selected ATcT [1, 2] enthalpy of formation based on version 1.122 of the Thermochemical Network [3]
This version of ATcT results was partially described in Ruscic et al. [4],
and was also used for the initial development of high-accuracy ANLn composite electronic structure methods [5].
|
Species Name |
Formula |
Image |
ΔfH°(0 K) |
ΔfH°(298.15 K) |
Uncertainty |
Units |
Relative Molecular Mass |
ATcT ID |
Methyl chloride | CH3Cl (l) | | -106.05 | -102.08 | ± 0.25 | kJ/mol | 50.4872 ± 0.0012 | 74-87-3*590 |
|
Top contributors to the provenance of ΔfH° of CH3Cl (l)The 20 contributors listed below account only for 44.9% of the provenance of ΔfH° of CH3Cl (l). A total of 307 contributors would be needed to account for 90% of the provenance.
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 11.8 | 3388.1 | CH3Cl (g) + 3/2 O2 (g) → CO2 (g) + H2O (cr,l) + HCl (aq, 600 H2O)  | ΔrH°(298.15 K) = -764.00 ± 0.50 (×1.414) kJ/mol | Fletcher 1971 | 6.5 | 3405.1 | CH3Br (g) → [CH3]+ (g) + Br (g)  | ΔrH°(0 K) = 12.834 ± 0.002 (×4.088) eV | Song 2001 | 3.0 | 3408.1 | CH3Br (g) + H2 (g) → CH4 (g) + HBr (g)  | ΔrH°(523.15 K) = -18.062 ± 0.321 kcal/mol | Fowell 1965 | 2.6 | 3392.10 | CH3Cl (g) + H (g) → CH4 (g) + Cl (g)  | ΔrH°(0 K) = -7296 ± 100 (×1.215) cm-1 | Czako 2012 | 2.0 | 3385.5 | CH3Cl (g) → C (g) + 3 H (g) + Cl (g)  | ΔrH°(0 K) = 371.34 ± 0.4 kcal/mol | Feller 2008 | 2.0 | 3420.4 | 4 CH3Br (g) → CBr4 (g) + 3 CH4 (g)  | ΔrH°(0 K) = 2.77 ± 1.0 kcal/mol | Ruscic G4 | 1.8 | 1642.1 | 2 H2 (g) + C (graphite) → CH4 (g)  | ΔrG°(1165 K) = 37.521 ± 0.068 kJ/mol | Smith 1946, note COf, 3rd Law | 1.7 | 3613.1 | 3 CH3Cl (g) → CCl3H (g) + 2 CH4 (g)  | ΔrH°(0 K) = -2.71 ± 1.2 kcal/mol | Ruscic G3B3 | 1.6 | 3420.3 | 4 CH3Br (g) → CBr4 (g) + 3 CH4 (g)  | ΔrH°(0 K) = 2.69 ± 1.1 kcal/mol | Ruscic G3X | 1.6 | 3613.2 | 3 CH3Cl (g) → CCl3H (g) + 2 CH4 (g)  | ΔrH°(0 K) = -3.16 ± 1.2 (×1.022) kcal/mol | Ruscic G3 | 1.5 | 3424.1 | 2 CH3Br (l) + H2 (g) → 2 CH4 (g) + Br2 (cr,l)  | ΔrH°(298.15 K) = -6.60 ± 0.60 (×1.297) kcal/mol | Adams 1966, as quoted by Cox 1970 | 1.2 | 3421.2 | 4 CH3Br (g) + CF4 (g) → 4 CH3F (g) + CBr4 (g)  | ΔrH°(0 K) = 54.31 ± 1.0 kcal/mol | Ruscic G4 | 1.0 | 3405.3 | CH3Br (g) → [CH3]+ (g) + Br (g)  | ΔrH°(0 K) = 12.82 ± 0.02 eV | Traeger 1981, AE corr, note unc2 | 1.0 | 3421.1 | 4 CH3Br (g) + CF4 (g) → 4 CH3F (g) + CBr4 (g)  | ΔrH°(0 K) = 54.25 ± 1.1 kcal/mol | Ruscic G3X | 0.8 | 3392.9 | CH3Cl (g) + H (g) → CH4 (g) + Cl (g)  | ΔrH°(0 K) = -21.11 ± 0.6 kcal/mol | Feller 2008, note unc2 | 0.8 | 3439.2 | 4 CH3I (g) + CCl4 (g) → 4 CH3Cl (g) + CI4 (g)  | ΔrH°(0 K) = 7.34 ± 1.1 (×2.089) kcal/mol | Ruscic unpub | 0.8 | 3439.3 | 4 CH3I (g) + CCl4 (g) → 4 CH3Cl (g) + CI4 (g)  | ΔrH°(0 K) = 7.32 ± 1.2 (×1.915) kcal/mol | Ruscic unpub | 0.7 | 3582.1 | CH4 (g) + CH2Cl2 (g) → 2 CH3Cl (g)  | ΔrH°(0 K) = 1.58 ± 1.2 kcal/mol | Ruscic G3B3 | 0.7 | 3582.2 | CH4 (g) + CH2Cl2 (g) → 2 CH3Cl (g)  | ΔrH°(0 K) = 1.76 ± 1.2 kcal/mol | Ruscic G3 | 0.7 | 3407.3 | CH3Br (g) + HBr (g) → Br2 (g) + CH4 (g)  | ΔrG°(712.2 K) = 35.8 ± 1.6 (×1.242) kJ/mol | Ferguson 1973, 3rd Law |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of CH3Cl (l) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 99.1 | Methyl chloride | CH3Cl (g) | | -74.25 | -82.18 | ± 0.25 | kJ/mol | 50.4872 ± 0.0012 | 74-87-3*0 | 98.6 | Methyl chloride cation | [CH3Cl]+ (g) | | 1015.03 | 1007.58 | ± 0.25 | kJ/mol | 50.4867 ± 0.0012 | 12538-71-5*0 | 81.0 | Methyl bromide | CH3Br (g) | | -20.36 | -35.76 | ± 0.27 | kJ/mol | 94.9385 ± 0.0013 | 74-83-9*0 | 79.8 | Methyl bromide cation | [CH3Br]+ (g) | | 996.75 | 981.84 | ± 0.27 | kJ/mol | 94.9380 ± 0.0013 | 12538-70-4*0 | 78.8 | Methyl bromide | CH3Br (l) | | -56.08 | -59.10 | ± 0.27 | kJ/mol | 94.9385 ± 0.0013 | 74-83-9*590 | 21.4 | Tetrabromomethane | CBr4 (g) | | 131.5 | 101.8 | ± 1.1 | kJ/mol | 331.6267 ± 0.0041 | 558-13-4*0 | -19.2 | Hydrogen bromide | HBr (aq, 2000 H2O) | | | -120.51 | ± 0.16 | kJ/mol | 80.9119 ± 0.0010 | 10035-10-6*841 | -19.2 | Hydrogen bromide | HBr (aq, 2570 H2O) | | | -120.55 | ± 0.16 | kJ/mol | 80.9119 ± 0.0010 | 10035-10-6*952 | -20.3 | Bromoniumyl | [HBr]+ (g) | | 1097.86 | 1090.01 | ± 0.16 | kJ/mol | 80.9114 ± 0.0010 | 12258-64-9*0 | -20.3 | Hydrogen bromide | HBr (g) | | -27.81 | -35.66 | ± 0.16 | kJ/mol | 80.9119 ± 0.0010 | 10035-10-6*0 |
|
Most Influential reactions involving CH3Cl (l)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.156 | 3401.10 | CH3Cl (l) → CH3Cl (g)  | ΔrG°(243.750 K) = 0.489 ± 0.083 kJ/mol | Messerly 1940, 3rd Law, ThermoData 2004 | 0.156 | 3401.16 | CH3Cl (l) → CH3Cl (g)  | ΔrG°(243.190 K) = 0.543 ± 0.083 kJ/mol | Ganeff 1948, 3rd Law, ThermoData 2004 | 0.129 | 3401.4 | CH3Cl (l) → CH3Cl (g)  | ΔrG°(231.405 K) = 1.626 ± 0.091 kJ/mol | ThermoData 2004, 3rd Law | 0.121 | 3401.14 | CH3Cl (l) → CH3Cl (g)  | ΔrG°(273.130 K) = -2.049 ± 0.094 kJ/mol | Ganeff 1948, 3rd Law, ThermoData 2004 | 0.121 | 3401.12 | CH3Cl (l) → CH3Cl (g)  | ΔrG°(228.426 K) = 1.879 ± 0.094 kJ/mol | Messerly 1940, 3rd Law, ThermoData 2004 | 0.085 | 3401.2 | CH3Cl (l) → CH3Cl (g)  | ΔrG°(213.995 K) = 3.202 ± 0.112 kJ/mol | ThermoData 2004, 3rd Law | 0.059 | 3401.6 | CH3Cl (l) → CH3Cl (g)  | ΔrG°(299.231 K) = -4.216 ± 0.135 kJ/mol | ThermoData 2004, 3rd Law | 0.054 | 3400.6 | CH3Cl (l) → CH3Cl (g)  | ΔrH°(248.955 K) = 21.861 ± 0.14 kJ/mol | McGovern 1943, ThermoData 2004 | 0.054 | 3400.7 | CH3Cl (l) → CH3Cl (g)  | ΔrH°(248.945 K) = 21.796 ± 0.14 kJ/mol | Messerly 1940, ThermoData 2004 | 0.020 | 3401.8 | CH3Cl (l) → CH3Cl (g)  | ΔrG°(311.370 K) = -5.194 ± 0.159 (×1.445) kJ/mol | Hsu 1964, 3rd Law, ThermoData 2004 | 0.013 | 3400.2 | CH3Cl (l) → CH3Cl (g)  | ΔrH°(298.15 K) = 20.18 ± 0.24 (×1.189) kJ/mol | ThermoData 2004 | 0.012 | 3400.9 | CH3Cl (l) → CH3Cl (g)  | ΔrH°(283.948 K) = 20.181 ± 0.17 (×1.756) kJ/mol | Griffiths 1932, ThermoData 2004 | 0.004 | 3400.5 | CH3Cl (l) → CH3Cl (g)  | ΔrH°(298.15 K) = 20.26 ± 0.5 kJ/mol | Manion 2002, Shorthose 1924, est unc | 0.003 | 3400.3 | CH3Cl (l) → CH3Cl (g)  | ΔrH°(292.24 K) = 20.71 ± 0.50 (×1.067) kJ/mol | Yates 1926, est unc | 0.002 | 3400.1 | CH3Cl (l) → CH3Cl (g)  | ΔrH°(298.15 K) = 20.5 ± 0.3 (×2.044) kJ/mol | Manion 2002 | 0.000 | 3401.13 | CH3Cl (l) → CH3Cl (g)  | ΔrH°(273.130 K) = 21.348 ± 1.171 kJ/mol | Ganeff 1948, 2nd Law, ThermoData 2004 | 0.000 | 3401.9 | CH3Cl (l) → CH3Cl (g)  | ΔrH°(243.750 K) = 22.107 ± 1.223 kJ/mol | Messerly 1940, 2nd Law, ThermoData 2004 | 0.000 | 3401.15 | CH3Cl (l) → CH3Cl (g)  | ΔrH°(243.190 K) = 22.164 ± 1.235 kJ/mol | Ganeff 1948, 2nd Law, ThermoData 2004 | 0.000 | 3401.5 | CH3Cl (l) → CH3Cl (g)  | ΔrH°(299.231 K) = 20.123 ± 1.403 kJ/mol | ThermoData 2004, 2nd Law | 0.000 | 3401.3 | CH3Cl (l) → CH3Cl (g)  | ΔrH°(231.405 K) = 22.544 ± 1.465 kJ/mol | ThermoData 2004, 2nd Law |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.122 of the Thermochemical Network (2016); available at ATcT.anl.gov |
4
|
|
B. Ruscic,
Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry.
J. Phys. Chem. A 119, 7810-7837 (2015)
[DOI: 10.1021/acs.jpca.5b01346]
|
5
|
|
S. J. Klippenstein, L. B. Harding, and B. Ruscic,
Ab initio Computations and Active Thermochemical Tables Hand in Hand: Heats of Formation of Core Combustion Species.
J. Phys. Chem. A 121, 6580-6602 (2017)
[DOI: 10.1021/acs.jpca.7b05945]
|
6
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|