Selected ATcT [1, 2] enthalpy of formation based on version 1.202 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.176 in order to include species related to the thermochemistry of glycine[4].

Methylamidogen anion

Formula: [CH3NH]- (g)
CAS RN: 54448-39-4
ATcT ID: 54448-39-4*0
SMILES: C[NH-]
InChI: InChI=1S/CH4N/c1-2/h2H,1H3/q-1
InChIKey: MGJXBDMLVWIYOQ-UHFFFAOYSA-N
Hills Formula: C1H4N1-

2D Image:

C[NH-]
Aliases: [CH3NH]-; Methylamidogen anion; Methylamidogen ion (1-); Methylamino anion; Methylamino ion (1-); CH3NH-; [H3CNH]-; H3CNH-; [NHCH3]-; NHCH3-; [HNCH3]-; HNCH3-
Relative Molecular Mass: 30.04975 ± 0.00085

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
145.40134.57± 0.64kJ/mol

3D Image of [CH3NH]- (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of [CH3NH]- (g)

The 20 contributors listed below account only for 85.5% of the provenance of ΔfH° of [CH3NH]- (g).
A total of 39 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
36.22696.1 CH3NH2 (g) [NH2]- (g) → [CH3NH]- (g) NH3 (g) ΔrG°(296 K) = -0.51 ± 0.20 kcal/molMacKay 1976, note unc2
22.12697.1 [CH3NH]- (g) H2 (g) → H- (g) CH3NH2 (g) ΔrG°(296 K) = -1.46 ± 0.29 kcal/molMacKay 1976, note unc2
13.32690.1 [CH3NH]- (g) → CH3NH (g) ΔrH°(0 K) = 0.432 ± 0.015 eVRadisic 2002
1.51677.1 [NH2]- (g) → NH2 (g) ΔrH°(0 K) = 0.771 ± 0.005 eVWickham-Jones 1989
1.22690.9 [CH3NH]- (g) → CH3NH (g) ΔrH°(0 K) = 0.446 ± 0.050 eVRuscic W1RO
1.15453.1 [(CH3)2N]- (g) CH3NH (g) → (CH3)2N (g) [CH3NH]- (g) ΔrH°(0 K) = 0.072 ± 0.034 eVRadisic 2002
1.01678.11 [NH2]- (g) → NH2 (g) ΔrH°(0 K) = 0.773 ± 0.006 eVFeller 2016, note unc2
1.02692.7 [CH3NH]- (g) → C (g) N (g) + 4 H (g) ΔrH°(0 K) = 454.74 ± 1.50 kcal/molRuscic W1RO
0.82692.6 [CH3NH]- (g) → C (g) N (g) + 4 H (g) ΔrH°(0 K) = 454.41 ± 1.60 kcal/molRuscic CBS-n
0.82692.4 [CH3NH]- (g) → C (g) N (g) + 4 H (g) ΔrH°(0 K) = 454.52 ± 1.60 kcal/molRuscic G4
0.85453.6 [(CH3)2N]- (g) CH3NH (g) → (CH3)2N (g) [CH3NH]- (g) ΔrH°(0 K) = 0.079 ± 0.040 eVRuscic W1RO
0.82690.5 [CH3NH]- (g) → CH3NH (g) ΔrH°(0 K) = 0.446 ± 0.061 eVRuscic G4
0.72692.3 [CH3NH]- (g) → C (g) N (g) + 4 H (g) ΔrH°(0 K) = 453.40 ± 1.72 kcal/molRuscic G3X
0.62662.12 CH3NH2 (g) → C (g) N (g) + 5 H (g) ΔrH°(0 K) = 2268.24 ± 0.74 kJ/molGratzfeld 2017
0.62688.11 CH3NH (g) → C (g) N (g) + 4 H (g) ΔrH°(0 K) = 444.22 ± 0.30 kcal/molKarton 2008, Karton 2011
0.55453.3 [(CH3)2N]- (g) CH3NH (g) → (CH3)2N (g) [CH3NH]- (g) ΔrH°(0 K) = 0.098 ± 0.050 eVRuscic G4
0.42692.5 [CH3NH]- (g) → C (g) N (g) + 4 H (g) ΔrH°(0 K) = 453.46 ± 2.16 kcal/molRuscic CBS-n
0.42690.4 [CH3NH]- (g) → CH3NH (g) ΔrH°(0 K) = 0.415 ± 0.085 eVRuscic G3X
0.31677.4 [NH2]- (g) → NH2 (g) ΔrH°(0 K) = 0.768 ± 0.010 eVRadisic 2002
0.32690.8 [CH3NH]- (g) → CH3NH (g) ΔrH°(0 K) = 0.456 ± 0.090 eVRuscic CBS-n

Top 10 species with enthalpies of formation correlated to the ΔfH° of [CH3NH]- (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
29.7 MethylamineCH3NH2 (g)CN-6.45-21.16± 0.22kJ/mol31.05714 ±
0.00088
74-89-5*0
26.7 MethylamidogenCH3NH (g)C[NH]187.99177.34± 0.39kJ/mol30.04920 ±
0.00085
15622-51-2*0
25.9 Methylammoniumyl[CH3NH2]+ (g)C[NH2+]865.99852.05± 0.25kJ/mol31.05659 ±
0.00088
34516-31-9*0
23.6 Azanide[NH2]- (g)[NH2-]114.65111.77± 0.29kJ/mol16.02317 ±
0.00016
17655-31-1*0
18.0 Phenide[C6H5]- (g)c1cccc[c-]1244.27230.84± 0.38kJ/mol77.1044 ±
0.0048
30922-78-2*0
15.3 Dimethylamide[(CH3)2N]- (g)C[N-]C123.1104.7± 1.4kJ/mol44.0763 ±
0.0017
34285-60-4*0
14.0 AminomethylCH2NH2 (g)[CH2]N159.42149.58± 0.35kJ/mol30.04920 ±
0.00085
10507-29-6*0
13.9 MethylamineCH3NH2 (l)CN-45.18± 0.44kJ/mol31.05714 ±
0.00088
74-89-5*500
12.6 Dimethylamine(CH3)2NH (g)CNC4.66-16.98± 0.45kJ/mol45.0837 ±
0.0017
124-40-3*0
11.5 EthylamineCH3CH2NH2 (g)CCN-28.02-49.79± 0.42kJ/mol45.0837 ±
0.0017
75-04-7*0

Most Influential reactions involving [CH3NH]- (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.5162696.1 CH3NH2 (g) [NH2]- (g) → [CH3NH]- (g) NH3 (g) ΔrG°(296 K) = -0.51 ± 0.20 kcal/molMacKay 1976, note unc2
0.2482697.1 [CH3NH]- (g) H2 (g) → H- (g) CH3NH2 (g) ΔrG°(296 K) = -1.46 ± 0.29 kcal/molMacKay 1976, note unc2
0.2012690.1 [CH3NH]- (g) → CH3NH (g) ΔrH°(0 K) = 0.432 ± 0.015 eVRadisic 2002
0.1185453.1 [(CH3)2N]- (g) CH3NH (g) → (CH3)2N (g) [CH3NH]- (g) ΔrH°(0 K) = 0.072 ± 0.034 eVRadisic 2002
0.0855453.6 [(CH3)2N]- (g) CH3NH (g) → (CH3)2N (g) [CH3NH]- (g) ΔrH°(0 K) = 0.079 ± 0.040 eVRuscic W1RO
0.0555453.3 [(CH3)2N]- (g) CH3NH (g) → (CH3)2N (g) [CH3NH]- (g) ΔrH°(0 K) = 0.098 ± 0.050 eVRuscic G4
0.0285453.5 [(CH3)2N]- (g) CH3NH (g) → (CH3)2N (g) [CH3NH]- (g) ΔrH°(0 K) = 0.092 ± 0.070 eVRuscic CBS-n
0.0285453.2 [(CH3)2N]- (g) CH3NH (g) → (CH3)2N (g) [CH3NH]- (g) ΔrH°(0 K) = 0.133 ± 0.070 eVRuscic G3X
0.0245453.4 [(CH3)2N]- (g) CH3NH (g) → (CH3)2N (g) [CH3NH]- (g) ΔrH°(0 K) = 0.123 ± 0.075 eVRuscic CBS-n
0.0182690.9 [CH3NH]- (g) → CH3NH (g) ΔrH°(0 K) = 0.446 ± 0.050 eVRuscic W1RO
0.0122690.5 [CH3NH]- (g) → CH3NH (g) ΔrH°(0 K) = 0.446 ± 0.061 eVRuscic G4
0.0102692.7 [CH3NH]- (g) → C (g) N (g) + 4 H (g) ΔrH°(0 K) = 454.74 ± 1.50 kcal/molRuscic W1RO
0.0082692.4 [CH3NH]- (g) → C (g) N (g) + 4 H (g) ΔrH°(0 K) = 454.52 ± 1.60 kcal/molRuscic G4
0.0082692.6 [CH3NH]- (g) → C (g) N (g) + 4 H (g) ΔrH°(0 K) = 454.41 ± 1.60 kcal/molRuscic CBS-n
0.0072692.3 [CH3NH]- (g) → C (g) N (g) + 4 H (g) ΔrH°(0 K) = 453.40 ± 1.72 kcal/molRuscic G3X
0.0062690.4 [CH3NH]- (g) → CH3NH (g) ΔrH°(0 K) = 0.415 ± 0.085 eVRuscic G3X
0.0052690.8 [CH3NH]- (g) → CH3NH (g) ΔrH°(0 K) = 0.456 ± 0.090 eVRuscic CBS-n
0.0052690.7 [CH3NH]- (g) → CH3NH (g) ΔrH°(0 K) = 0.442 ± 0.092 eVRuscic CBS-n
0.0042692.5 [CH3NH]- (g) → C (g) N (g) + 4 H (g) ΔrH°(0 K) = 453.46 ± 2.16 kcal/molRuscic CBS-n


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.202 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   B. Ruscic and D. H. Bross
Accurate and Reliable Thermochemistry by Data Analysis of Complex Thermochemical Networks using Active Thermochemical Tables: The Case of Glycine Thermochemistry
Faraday Discuss. (in press) (2024) [DOI: 10.1039/D4FD00110A]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.