Selected ATcT [1, 2] enthalpy of formation based on version 1.202 of the Thermochemical Network [3]This version of ATcT results[3] was generated by additional expansion of version 1.176 in order to include species related to the thermochemistry of glycine[4].
|
Hydride |
Formula: H- (g) |
CAS RN: 12184-88-2 |
ATcT ID: 12184-88-2*0 |
SMILES: [H-] |
InChI: InChI=1S/H/q-1 |
InChIKey: KLGZELKXQMTEMM-UHFFFAOYSA-N |
Hills Formula: H1- |
2D Image: |
|
Aliases: H-; Hydride; Hydride ion; Hydride anion; Hydride ion (1-); Hydrogen atom anion; Hydrogen atom ion (1-); Hydrogen anion; Hydrogen ion (1-); Atomic hydrogen anion; Atomic hydrogen ion (1-); Monohydrogen anion; Monohydrogen ion (1-); Protide |
Relative Molecular Mass: 1.008489 ± 0.000070 |
ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units |
---|
143.264 | 145.228 | ± 0.000 | kJ/mol |
|
3D Image of H- (g) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of H- (g)The 1 contributors listed below account for 91.0% of the provenance of ΔfH° of H- (g).
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of H- (g) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 29.2 | Hydrogen atom | H (g) | | 216.034 | 217.998 | ± 0.000 | kJ/mol | 1.007940 ± 0.000070 | 12385-13-6*0 | 7.6 | Hydron | H+ (g) | | 1528.084 | 1530.047 | ± 0.000 | kJ/mol | 1.007391 ± 0.000070 | 12408-02-5*0 | 6.5 | Dihydrogen cation | [H2]+ (g) | | 1488.364 | 1488.480 | ± 0.000 | kJ/mol | 2.01533 ± 0.00014 | 12184-90-6*0 | 3.8 | Dihydrogen cation | [H2]+ (g, para) | | 1488.364 | 1488.480 | ± 0.000 | kJ/mol | 2.01533 ± 0.00014 | 12184-90-6*2 | 3.8 | Deuterium hydride | HD (g) | | 0.328 | 0.319 | ± 0.000 | kJ/mol | 3.022042 ± 0.000070 | 13983-20-5*0 | 3.7 | Dihydrogen | H2 (g, ortho) | | 1.417 | 0.019 | ± 0.000 | kJ/mol | 2.01588 ± 0.00014 | 1333-74-0*1 | 3.5 | Deuterium hydride cation | [HD]+ (g) | | 1490.498 | 1490.587 | ± 0.000 | kJ/mol | 3.021493 ± 0.000070 | 12181-16-7*0 | 3.4 | Dihydrogen cation | [H2]+ (g, ortho) | | 1489.060 | 1488.480 | ± 0.000 | kJ/mol | 2.01533 ± 0.00014 | 12184-90-6*1 | 3.4 | Dihydrogen | H2 (g, para) | | -0.000 | -0.058 | ± 0.000 | kJ/mol | 2.01588 ± 0.00014 | 1333-74-0*2 |
|
Most Influential reactions involving H- (g)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.996 | 81.6 | H- (g) → H (g)  | ΔrH°(0 K) = 6083.064145 ± 0.000030 cm-1 | Drake 1999, Andersen 1999, Feller 2016 | 0.942 | 78.1 | [H2]- (g) → H (g) + H- (g)  | ΔrH°(0 K) = 8819.364 ± 100 cm-1 | Srivastava 2012, est unc | 0.635 | 9508.5 | [HeH]- (g) → He (g) + H- (g)  | ΔrH°(0 K) = 0.72 ± 0.2 cm-1 | Harris 2014, est unc | 0.522 | 9343.1 | CH3CH2NH2 (g) + H- (g) → [CH3CH2NH]- (g) + H2 (g)  | ΔrG°(296 K) = -2.56 ± 0.22 kcal/mol | MacKay 1976, note unc2 | 0.333 | 9535.2 | [NeH]- (g) → Ne (g) + H- (g)  | ΔrH°(0 K) = 12. ± 5. cm-1 | Robicheaux 1999, est unc | 0.333 | 9535.3 | [NeH]- (g) → Ne (g) + H- (g)  | ΔrH°(0 K) = 16.75 ± 5. cm-1 | Harris 2014, est unc | 0.333 | 9535.1 | [NeH]- (g) → Ne (g) + H- (g)  | ΔrH°(0 K) = 13.425 ± 5. cm-1 | Vallet 2001, est unc | 0.248 | 2697.1 | [CH3NH]- (g) + H2 (g) → H- (g) + CH3NH2 (g)  | ΔrG°(296 K) = -1.46 ± 0.29 kcal/mol | MacKay 1976, note unc2 | 0.158 | 9508.6 | [HeH]- (g) → He (g) + H- (g)  | ΔrH°(0 K) = 0.757 ± 0.4 cm-1 | Vallet 2001, est unc | 0.101 | 9508.7 | [HeH]- (g) → He (g) + H- (g)  | ΔrH°(0 K) = 0.531 ± 0.5 cm-1 | Vallet 2001, est unc | 0.051 | 9508.9 | [HeH]- (g) → He (g) + H- (g)  | ΔrH°(0 K) = 0.9 ± 0.7 cm-1 | Robicheaux 1999, est unc | 0.051 | 9508.8 | [HeH]- (g) → He (g) + H- (g)  | ΔrH°(0 K) = 0.952 ± 0.7 cm-1 | Li 1999, est unc | 0.050 | 1685.4 | [NH2]- (g) + H2 (g) → H- (g) + NH3 (g)  | ΔrG°(296 K) = -1.916 ± 0.272 (×1.114) kcal/mol | Bohme 1973, MacKay 1976, note unc2 | 0.029 | 1685.2 | [NH2]- (g) + H2 (g) → H- (g) + NH3 (g)  | ΔrG°(297 K) = -1.945 ± 0.400 kcal/mol | Bohme 1973, note unc2 | 0.015 | 385.1 | [HOOO]- (g, gauche) → OOO (g) + H- (g)  | ΔrH°(0 K) = 99 ± 3 kcal/mol | Elliott 2003, est unc | 0.004 | 3104.1 | [HCO]- (g) → H- (g) + CO (g)  | ΔrH°(0 K) = 4.45 ± 1.50 kcal/mol | van Mourik 2000, est unc | 0.002 | 6959.1 | C6H6 (g) → [C6H5]+ (g) + H- (g)  | ΔrH°(298.15 K) = 1196 ± 16 kJ/mol | Nicolaides 1997, est unc | 0.002 | 81.3 | H- (g) → H (g)  | ΔrH°(0 K) = 6083.06 ± 0.02 cm-1 | Hotop 1985, Aashamar 1970, Hotop 1975 | 0.002 | 2497.1 | CH3CH3 (g) → [CH3CH2]+ (g) + H- (g)  | ΔrH°(0 K) = 11.71 ± 0.06 eV | Chupka 1967 | 0.001 | 2746.1 | CH2NH (g) → [HCNH]+ (g) + H- (g)  | ΔrH°(298.15 K) = 231.8 ± 2.5 (×3.513) kcal/mol | DeFrees 1978 |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.202 of the Thermochemical Network (2024); available at ATcT.anl.gov |
4
|
|
B. Ruscic and D. H. Bross
Accurate and Reliable Thermochemistry by Data Analysis of Complex Thermochemical Networks using Active Thermochemical Tables: The Case of Glycine Thermochemistry
Faraday Discuss. (in press) (2024)
[DOI: 10.1039/D4FD00110A]
|
5
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
6
|
|
B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019)
[DOI: 10.1016/B978-0-444-64087-1.00001-2]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|