Selected ATcT [1, 2] enthalpy of formation based on version 1.202 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.176 in order to include species related to the thermochemistry of glycine[4].

Peroxynitric acid

Formula: HOON(O)O (g)
CAS RN: 26404-66-0
ATcT ID: 26404-66-0*0
SMILES: [N+](=O)([O-])OO
InChI: InChI=1S/HNO4/c2-1(3)5-4/h4H
InChIKey: UUZZMWZGAZGXSF-UHFFFAOYSA-N
Hills Formula: H1N1O4

2D Image:

[N+](=O)([O-])OO
Aliases: HOON(O)O; Peroxynitric acid; Hydroxy nitrate; HOONO2
Relative Molecular Mass: 79.0123 ± 0.0012

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
-41.46-51.77± 0.32kJ/mol

3D Image of HOON(O)O (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of HOON(O)O (g)

The 20 contributors listed below account only for 84.6% of the provenance of ΔfH° of HOON(O)O (g).
A total of 34 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
69.92109.2 HOON(O)O (g) → HOO (g) ONO (g) ΔrG°(283 K) = 51.5 ± 0.3 kJ/molZabel 1995, Kurylo 1987, 3rd Law, est unc
1.72108.1 1/2 H2 (g) + 1/2 N2 (g) + 2 O2 (g) → HOON(O)O (g) ΔrH°(0 K) = -41.3 ± 2.4 kJ/molSzakacs 2011
1.42109.5 HOON(O)O (g) → HOO (g) ONO (g) ΔrG°(340 K) = 10.1 ± 0.5 kcal/molGierczak 2005, 3rd Law
0.9277.4 HOO (g) → H (g) + 2 O (g) ΔrH°(0 K) = 694.85 ± 0.56 kJ/molHarding 2008
0.81483.2 NO (g) → N (g) O (g) ΔrH°(0 K) = 52400 ± 10 cm-1Dingle 1975
0.81483.1 NO (g) → N (g) O (g) ΔrH°(0 K) = 52400 ± 10 cm-1Callear 1970
0.7288.5 HOO (g) → H (g) O2 (g) ΔrH°(0 K) = 48.02 ± 0.15 kcal/molFlowers 2004, est unc
0.7275.8 HOO (g) → H (g) + 2 O (g) ΔrH°(0 K) = 166.00 ± 0.15 kcal/molFlowers 2004, est unc
0.7290.1 OH (g) O2 (g) → HOO (g) O (g) ΔrH°(0 K) = 53.81 ± 0.15 kcal/molFlowers 2004, est unc
0.7289.4 HOO (g) → OH (g) O (g) ΔrH°(0 K) = 64.16 ± 0.15 kcal/molFlowers 2004, est unc
0.62111.5 HOON(O)O (g) HONO (g, trans) → HON(O)O (g) HOONO (g, cis, cis) ΔrH°(0 K) = -3.95 ± 0.85 kcal/molRuscic W1RO
0.62110.5 HOON(O)O (g) H2O (g) → HON(O)O (g) HOOH (g) ΔrH°(0 K) = 6.31 ± 0.9 kcal/molRuscic W1RO
0.61483.4 NO (g) → N (g) O (g) ΔrH°(0 K) = 52408 ± 10 (×1.139) cm-1Kley 1973, Miescher 1974, est unc
0.52111.2 HOON(O)O (g) HONO (g, trans) → HON(O)O (g) HOONO (g, cis, cis) ΔrH°(0 K) = -2.94 ± 0.90 kcal/molRuscic G4
0.52111.4 HOON(O)O (g) HONO (g, trans) → HON(O)O (g) HOONO (g, cis, cis) ΔrH°(0 K) = -4.17 ± 0.90 kcal/molRuscic CBS-n
0.52111.1 HOON(O)O (g) HONO (g, trans) → HON(O)O (g) HOONO (g, cis, cis) ΔrH°(0 K) = -2.86 ± 0.90 kcal/molRuscic G3X
0.5277.2 HOO (g) → H (g) + 2 O (g) ΔrH°(0 K) = 695.10 ± 0.70 kJ/molHarding 2008
0.5278.1 HOO (g) → [HOO]+ (g) ΔrH°(0 K) = 11.352 ± 0.007 eVLitorja 1998a
0.5277.3 HOO (g) → H (g) + 2 O (g) ΔrH°(0 K) = 694.64 ± 0.74 kJ/molHarding 2008
0.52110.4 HOON(O)O (g) H2O (g) → HON(O)O (g) HOOH (g) ΔrH°(0 K) = 7.19 ± 1.0 kcal/molRuscic CBS-n

Top 10 species with enthalpies of formation correlated to the ΔfH° of HOON(O)O (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
39.8 DioxidanylHOO (g)O[O]15.0712.16± 0.14kJ/mol33.00674 ±
0.00060
3170-83-0*0
19.1 Nitrogen dioxideONO (g)O=[N]=O36.86134.054± 0.064kJ/mol46.00554 ±
0.00060
10102-44-0*0
19.1 Nitric oxideNO (g)[N]=O90.62291.126± 0.064kJ/mol30.00614 ±
0.00031
10102-43-9*0
19.1 Nitrosyl ion[NO]+ (g)N#[O+]984.490984.485± 0.064kJ/mol30.00559 ±
0.00031
14452-93-8*0
18.6 Dinitrogen tetraoxideO2NNO2 (g)O=N(=O)N(=O)=O20.1610.87± 0.14kJ/mol92.0111 ±
0.0012
10544-72-6*0
18.4 Nitrosyl chlorideClNO (g)ClN=O54.45752.555± 0.066kJ/mol65.45884 ±
0.00095
2696-92-6*0
18.0 DioxohydrazineONNO (g, cis)O=NN=O172.90171.13± 0.14kJ/mol60.01228 ±
0.00062
16824-89-8*2
18.0 DioxohydrazineONNO (g)O=NN=O172.90171.13± 0.14kJ/mol60.01228 ±
0.00062
16824-89-8*0
17.1 Nitrogen sesquioxideONN(O)O (g)O=N-[N](=O)[O]90.7386.16± 0.15kJ/mol76.01168 ±
0.00091
10544-73-7*0
16.0 Nitrous acidHONO (g)N(=O)O-72.988-78.645± 0.077kJ/mol47.01348 ±
0.00061
7782-77-6*0

Most Influential reactions involving HOON(O)O (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.8992109.2 HOON(O)O (g) → HOO (g) ONO (g) ΔrG°(283 K) = 51.5 ± 0.3 kJ/molZabel 1995, Kurylo 1987, 3rd Law, est unc
0.0182109.5 HOON(O)O (g) → HOO (g) ONO (g) ΔrG°(340 K) = 10.1 ± 0.5 kcal/molGierczak 2005, 3rd Law
0.0182111.5 HOON(O)O (g) HONO (g, trans) → HON(O)O (g) HOONO (g, cis, cis) ΔrH°(0 K) = -3.95 ± 0.85 kcal/molRuscic W1RO
0.0172108.1 1/2 H2 (g) + 1/2 N2 (g) + 2 O2 (g) → HOON(O)O (g) ΔrH°(0 K) = -41.3 ± 2.4 kJ/molSzakacs 2011
0.0162111.4 HOON(O)O (g) HONO (g, trans) → HON(O)O (g) HOONO (g, cis, cis) ΔrH°(0 K) = -4.17 ± 0.90 kcal/molRuscic CBS-n
0.0162111.2 HOON(O)O (g) HONO (g, trans) → HON(O)O (g) HOONO (g, cis, cis) ΔrH°(0 K) = -2.94 ± 0.90 kcal/molRuscic G4
0.0162111.1 HOON(O)O (g) HONO (g, trans) → HON(O)O (g) HOONO (g, cis, cis) ΔrH°(0 K) = -2.86 ± 0.90 kcal/molRuscic G3X
0.0132111.3 HOON(O)O (g) HONO (g, trans) → HON(O)O (g) HOONO (g, cis, cis) ΔrH°(0 K) = -3.39 ± 1.00 kcal/molRuscic CBS-n
0.0082110.5 HOON(O)O (g) H2O (g) → HON(O)O (g) HOOH (g) ΔrH°(0 K) = 6.31 ± 0.9 kcal/molRuscic W1RO
0.0072110.2 HOON(O)O (g) H2O (g) → HON(O)O (g) HOOH (g) ΔrH°(0 K) = 6.79 ± 1.0 kcal/molRuscic G4
0.0072110.4 HOON(O)O (g) H2O (g) → HON(O)O (g) HOOH (g) ΔrH°(0 K) = 7.19 ± 1.0 kcal/molRuscic CBS-n
0.0052110.1 HOON(O)O (g) H2O (g) → HON(O)O (g) HOOH (g) ΔrH°(0 K) = 7.12 ± 1.1 kcal/molRuscic G3X
0.0042109.4 HOON(O)O (g) → HOO (g) ONO (g) ΔrG°(298.15 K) = 11.7 ± 1.0 kcal/molSander 1984, Graham 1978d, 3rd Law, est unc
0.0042110.3 HOON(O)O (g) H2O (g) → HON(O)O (g) HOOH (g) ΔrH°(0 K) = 6.56 ± 1.3 kcal/molRuscic CBS-n
0.0022107.5 HOON(O)O (g) → H (g) N (g) + 4 O (g) ΔrH°(0 K) = 409.54 ± 1.50 kcal/molRuscic W1RO
0.0022107.2 HOON(O)O (g) → H (g) N (g) + 4 O (g) ΔrH°(0 K) = 410.90 ± 1.60 kcal/molRuscic G4, Buendia-Atencio 2010
0.0022109.10 HOON(O)O (g) → HOO (g) ONO (g) ΔrH°(0 K) = 22.82 ± 1.50 kcal/molRuscic W1RO
0.0022109.1 HOON(O)O (g) → HOO (g) ONO (g) ΔrH°(283 K) = 99.6 ± 6.3 kJ/molZabel 1995, Kurylo 1987, 2nd Law, note unc2
0.0012107.1 HOON(O)O (g) → H (g) N (g) + 4 O (g) ΔrH°(0 K) = 411.30 ± 1.72 kcal/molRuscic G3X
0.0012109.7 HOON(O)O (g) → HOO (g) ONO (g) ΔrH°(0 K) = 22.17 ± 1.60 kcal/molRuscic G4


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.202 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   B. Ruscic and D. H. Bross
Accurate and Reliable Thermochemistry by Data Analysis of Complex Thermochemical Networks using Active Thermochemical Tables: The Case of Glycine Thermochemistry
Faraday Discuss. (in press) (2024) [DOI: 10.1039/D4FD00110A]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.