Selected ATcT [1, 2] enthalpy of formation based on version 1.202 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.176 in order to include species related to the thermochemistry of glycine[4].

Ammonium bromide

Formula: (NH4)Br (cr)
CAS RN: 12124-97-9
ATcT ID: 12124-97-9*510
SMILES: [NH4+].[Br-]
InChI: InChI=1S/BrH.H3N/h1H;1H3
InChIKey: SWLVFNYSXGMGBS-UHFFFAOYSA-N
Hills Formula: Br1H4N1

2D Image:

[NH4+].[Br-]
Aliases: (NH4)Br; Ammonium bromide; NH4Br; FR-1; FR-11
Relative Molecular Mass: 97.9425 ± 0.0010

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
-253.26-269.84± 0.14kJ/mol

Top contributors to the provenance of ΔfH° of (NH4)Br (cr)

The 20 contributors listed below account only for 69.8% of the provenance of ΔfH° of (NH4)Br (cr).
A total of 103 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
16.39864.1 S(O)(OH)2 (aq, 2500 H2O) Br2 (cr,l) H2O (cr,l) → OS(O)(OH)2 (aq, 2500 H2O) + 2 HBr (aq, 1250 H2O) ΔrH°(298.15 K) = -55.47 ± 0.11 kcal/molJohnson 1963
8.61209.1 [HBr]+ (g) → H (g) Br+ (g) ΔrH°(0 K) = 31394.5 ± 20 cm-1Haugh 1971, Norling 1935
7.11108.2 Br2 (cr,l) → Br2 (g) ΔrH°(298.15 K) = 7.386 ± 0.027 kcal/molHildenbrand 1958
6.01142.1 HBr (aq, 3000 H2O) → HBr (aq) ΔrH°(298.15 K) = -0.239 ± 0.040 kJ/molNBS Tables 1989, Parker 1965, NBS TN270
5.11726.1 NH3 (g) → NH3 (aq, undissoc) ΔrH°(298.15 K) = -8.448 ± 0.015 kcal/molVanderzee 1972
5.01733.5 (NH4)Br (cr) → [NH4]+ (aq) Br- (aq) ΔrG°(298.15 K) = -7.849 ± 0.040 kJ/molCODATA Key Vals
4.61138.1 HBr (g) → HBr (aq, 2570 H2O) ΔrH°(298.15 K) = -20.286 ± 0.012 kcal/molVanderzee 1963
1.81662.1 1/2 N2 (g) + 3/2 H2 (g) → NH3 (g) ΔrH°(298.15 K) = -10.885 ± 0.010 kcal/molLarson 1923, Vanderzee 1972
1.71135.1 1/2 H2 (g) + 1/2 Br2 (cr,l) → HBr (aq) ΔrG°(298.15 K) = -102.81 ± 0.80 kJ/molJones 1934, as quoted by CODATA Key Vals
1.61209.3 [HBr]+ (g) → H (g) Br+ (g) ΔrH°(0 K) = 31358 ± 15 (×3.018) cm-1Penno 1998, Norling 1935, est unc
1.51199.1 Cl2 (g) + 2 Br- (aq) → Br2 (cr,l) + 2 Cl- (aq) ΔrH°(298.15 K) = -91.29 ± 0.40 (×4.269) kJ/molJohnson 1963, as quoted by CODATA Key Vals
1.51199.2 Cl2 (g) + 2 Br- (aq) → Br2 (cr,l) + 2 Cl- (aq) ΔrH°(298.15 K) = -91.29 ± 0.80 (×2.134) kJ/molSunner 1964, as quoted by CODATA Key Vals
1.21726.2 NH3 (g) → NH3 (aq, undissoc) ΔrH°(298.15 K) = -8.456 ± 0.030 kcal/molStavaley 1971, Vanderzee 1972, as quoted by CODATA Key Vals
1.21726.7 NH3 (g) → NH3 (aq, undissoc) ΔrH°(298.15 K) = -8.456 ± 0.030 kcal/molStaveley 1971, Vanderzee 1972
1.21733.3 (NH4)Br (cr) → [NH4]+ (aq) Br- (aq) ΔrG°(298.15 K) = -1.883 ± 0.019 kcal/molShults 1966, Stephenson 1968, est unc
1.11199.3 Cl2 (g) + 2 Br- (aq) → Br2 (cr,l) + 2 Cl- (aq) ΔrH°(298.15 K) = -91.55 ± 2.00 kJ/molThomsen 1882, as quoted by CODATA Key Vals
1.01356.1 Br2 (cr,l) + 3 I- (aq) → [I3]- (aq) + 2 Br- (aq) ΔrH°(298.15 K) = -29.355 ± 0.364 kcal/molWu 1963
0.91661.5 1/2 N2 (g) + 3/2 H2 (g) → NH3 (g) ΔrH°(298.15 K) = -10.875 ± 0.014 kcal/molSchulz 1966, Vanderzee 1972
0.76331.1 CH3Br (g) → [CH3]+ (g) Br (g) ΔrH°(0 K) = 12.834 ± 0.002 (×2.954) eVSong 2001
0.73108.2 HCO (g) HBr (g) → CH2O (g) Br (g) ΔrG°(385 K) = 6.79 ± 0.64 (×1.297) kJ/molBecerra 1997, Nava 1981, 3rd Law, note unc
16.39864.1 S(O)(OH)2 (aq, 2500 H2O) Br2 (cr,l) H2O (cr,l) → OS(O)(OH)2 (aq, 2500 H2O) + 2 HBr (aq, 1250 H2O) ΔrH°(298.15 K) = -55.47 ± 0.11 kcal/molJohnson 1963
8.61209.1 [HBr]+ (g) → H (g) Br+ (g) ΔrH°(0 K) = 31394.5 ± 20 cm-1Haugh 1971, Norling 1935
7.11108.2 Br2 (cr,l) → Br2 (g) ΔrH°(298.15 K) = 7.386 ± 0.027 kcal/molHildenbrand 1958
6.01142.1 HBr (aq, 3000 H2O) → HBr (aq) ΔrH°(298.15 K) = -0.239 ± 0.040 kJ/molNBS Tables 1989, Parker 1965, NBS TN270
5.11726.1 NH3 (g) → NH3 (aq, undissoc) ΔrH°(298.15 K) = -8.448 ± 0.015 kcal/molVanderzee 1972
5.01733.5 (NH4)Br (cr) → [NH4]+ (aq) Br- (aq) ΔrG°(298.15 K) = -7.849 ± 0.040 kJ/molCODATA Key Vals
4.61138.1 HBr (g) → HBr (aq, 2570 H2O) ΔrH°(298.15 K) = -20.286 ± 0.012 kcal/molVanderzee 1963
1.81662.1 1/2 N2 (g) + 3/2 H2 (g) → NH3 (g) ΔrH°(298.15 K) = -10.885 ± 0.010 kcal/molLarson 1923, Vanderzee 1972
1.71135.1 1/2 H2 (g) + 1/2 Br2 (cr,l) → HBr (aq) ΔrG°(298.15 K) = -102.81 ± 0.80 kJ/molJones 1934, as quoted by CODATA Key Vals
1.61209.3 [HBr]+ (g) → H (g) Br+ (g) ΔrH°(0 K) = 31358 ± 15 (×3.018) cm-1Penno 1998, Norling 1935, est unc
1.51199.1 Cl2 (g) + 2 Br- (aq) → Br2 (cr,l) + 2 Cl- (aq) ΔrH°(298.15 K) = -91.29 ± 0.40 (×4.269) kJ/molJohnson 1963, as quoted by CODATA Key Vals
1.51199.2 Cl2 (g) + 2 Br- (aq) → Br2 (cr,l) + 2 Cl- (aq) ΔrH°(298.15 K) = -91.29 ± 0.80 (×2.134) kJ/molSunner 1964, as quoted by CODATA Key Vals
1.21726.2 NH3 (g) → NH3 (aq, undissoc) ΔrH°(298.15 K) = -8.456 ± 0.030 kcal/molStavaley 1971, Vanderzee 1972, as quoted by CODATA Key Vals
1.21726.7 NH3 (g) → NH3 (aq, undissoc) ΔrH°(298.15 K) = -8.456 ± 0.030 kcal/molStaveley 1971, Vanderzee 1972
1.21733.3 (NH4)Br (cr) → [NH4]+ (aq) Br- (aq) ΔrG°(298.15 K) = -1.883 ± 0.019 kcal/molShults 1966, Stephenson 1968, est unc
1.11199.3 Cl2 (g) + 2 Br- (aq) → Br2 (cr,l) + 2 Cl- (aq) ΔrH°(298.15 K) = -91.55 ± 2.00 kJ/molThomsen 1882, as quoted by CODATA Key Vals
1.01356.1 Br2 (cr,l) + 3 I- (aq) → [I3]- (aq) + 2 Br- (aq) ΔrH°(298.15 K) = -29.355 ± 0.364 kcal/molWu 1963
0.91661.5 1/2 N2 (g) + 3/2 H2 (g) → NH3 (g) ΔrH°(298.15 K) = -10.875 ± 0.014 kcal/molSchulz 1966, Vanderzee 1972
0.76331.1 CH3Br (g) → [CH3]+ (g) Br (g) ΔrH°(0 K) = 12.834 ± 0.002 (×2.954) eVSong 2001
0.73108.2 HCO (g) HBr (g) → CH2O (g) Br (g) ΔrG°(385 K) = 6.79 ± 0.64 (×1.297) kJ/molBecerra 1997, Nava 1981, 3rd Law, note unc

Top 10 species with enthalpies of formation correlated to the ΔfH° of (NH4)Br (cr)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
87.9 BromideBr- (aq)[Br-]-120.50± 0.12kJ/mol79.90455 ±
0.00100
24959-67-9*800
87.9 Hydrogen bromideHBr (aq)Br-120.50± 0.12kJ/mol80.9119 ±
0.0010
10035-10-6*800
87.9 BromideBr- (aq)[Br-]-120.50± 0.12kJ/mol79.90455 ±
0.00100
24959-67-9*800
87.9 Hydrogen bromideHBr (aq)Br-120.50± 0.12kJ/mol80.9119 ±
0.0010
10035-10-6*800
83.3 Hydrogen bromideHBr (aq, 3000 H2O)Br-120.25± 0.12kJ/mol80.9119 ±
0.0010
10035-10-6*842
83.3 Hydrogen bromideHBr (aq, 3000 H2O)Br-120.25± 0.12kJ/mol80.9119 ±
0.0010
10035-10-6*842
83.2 Hydrogen bromideHBr (aq, 15 H2O)Br-117.38± 0.12kJ/mol80.9119 ±
0.0010
10035-10-6*817
83.2 Hydrogen bromideHBr (aq, 40 H2O)Br-118.90± 0.12kJ/mol80.9119 ±
0.0010
10035-10-6*821
83.2 Hydrogen bromideHBr (aq, 100000 H2O)Br-120.43± 0.12kJ/mol80.9119 ±
0.0010
10035-10-6*861
83.2 Hydrogen bromideHBr (aq, 500 H2O)Br-119.97± 0.12kJ/mol80.9119 ±
0.0010
10035-10-6*833
83.2 Hydrogen bromideHBr (aq, 600 H2O)Br-120.01± 0.12kJ/mol80.9119 ±
0.0010
10035-10-6*834
83.2 Hydrogen bromideHBr (aq, 5000 H2O)Br-120.30± 0.12kJ/mol80.9119 ±
0.0010
10035-10-6*844
83.2 Hydrogen bromideHBr (aq, 5000 H2O)Br-120.30± 0.12kJ/mol80.9119 ±
0.0010
10035-10-6*844
83.2 Hydrogen bromideHBr (aq, 800 H2O)Br-120.06± 0.12kJ/mol80.9119 ±
0.0010
10035-10-6*837
83.2 Hydrogen bromideHBr (aq, 15 H2O)Br-117.38± 0.12kJ/mol80.9119 ±
0.0010
10035-10-6*817
83.2 Hydrogen bromideHBr (aq, 40 H2O)Br-118.90± 0.12kJ/mol80.9119 ±
0.0010
10035-10-6*821
83.2 Hydrogen bromideHBr (aq, 100000 H2O)Br-120.43± 0.12kJ/mol80.9119 ±
0.0010
10035-10-6*861
83.2 Hydrogen bromideHBr (aq, 500 H2O)Br-119.97± 0.12kJ/mol80.9119 ±
0.0010
10035-10-6*833
83.2 Hydrogen bromideHBr (aq, 600 H2O)Br-120.01± 0.12kJ/mol80.9119 ±
0.0010
10035-10-6*834
83.2 Hydrogen bromideHBr (aq, 800 H2O)Br-120.06± 0.12kJ/mol80.9119 ±
0.0010
10035-10-6*837

Most Influential reactions involving (NH4)Br (cr)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.7861733.5 (NH4)Br (cr) → [NH4]+ (aq) Br- (aq) ΔrG°(298.15 K) = -7.849 ± 0.040 kJ/molCODATA Key Vals
0.1991733.3 (NH4)Br (cr) → [NH4]+ (aq) Br- (aq) ΔrG°(298.15 K) = -1.883 ± 0.019 kcal/molShults 1966, Stephenson 1968, est unc
0.0141724.4 (NH4)Br (cr) → NH3 (g) HBr (g) ΔrH°(298.15 K) = 45.08 ± 0.17 kcal/molSmits 1928, JANAF 3, 3rd Law
0.0131724.2 (NH4)Br (cr) → NH3 (g) HBr (g) ΔrG°(643.3 K) = 3.316 ± 0.035 (×5.076) kcal/molSmith 1914, 3rd Law
0.0041733.2 (NH4)Br (cr) → [NH4]+ (aq) Br- (aq) ΔrH°(298.15 K) = 4.007 ± 0.015 (×8.175) kcal/molStephenson 1968
0.0041733.4 (NH4)Br (cr) → [NH4]+ (aq) Br- (aq) ΔrH°(298.15 K) = 4.01 ± 0.10 (×1.242) kcal/molParker 1965, as quoted by CODATA Key Vals
0.0031724.3 (NH4)Br (cr) → NH3 (g) HBr (g) ΔrH°(298.15 K) = 45.50 ± 0.17 (×2.044) kcal/molSmits 1928, JANAF 3, 2nd Law
0.0011724.7 (NH4)Br (cr) → NH3 (g) HBr (g) ΔrG°(589.4 K) = 28.72 ± 2.13 kJ/molJohnson 1909, 3rd Law
0.0001724.1 (NH4)Br (cr) → NH3 (g) HBr (g) ΔrH°(643.3 K) = 42.77 ± 0.78 kcal/molSmith 1914, 2nd Law
0.0001724.8 (NH4)Br (cr) → NH3 (g) HBr (g) ΔrH°(589.4 K) = 197.44 ± 7.16 (×2.43) kJ/molJohnson 1909, 2nd Law


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.202 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   B. Ruscic and D. H. Bross
Accurate and Reliable Thermochemistry by Data Analysis of Complex Thermochemical Networks using Active Thermochemical Tables: The Case of Glycine Thermochemistry
Faraday Discuss. (in press) (2024) [DOI: 10.1039/D4FD00110A]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.