Selected ATcT [1, 2] enthalpy of formation based on version 1.176 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.172 to include species related to Criegee intermediates that are involved in several ongoing studies[4].

Benzene anion

Formula: [C6H6]- (g)
CAS RN: 34562-85-1
ATcT ID: 34562-85-1*0
SMILES: c1ccc(cc1)[H-]
InChI: InChI=1S/C6H6/c1-2-4-6-5-3-1/h1-6H/q-1
InChIKey: NGYFGCHOHXXGRI-UHFFFAOYSA-N
Hills Formula: C6H6-

2D Image:

c1ccc(cc1)[H-]
Aliases: Benzene anion; Benzene ion (1-); Cyclohexatriene anion; Cyclohexatriene ion (1-); [C6H6]-; C6H6-
Relative Molecular Mass: 78.1124 ± 0.0048

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
209.1197.2± 1.2kJ/mol

3D Image of [C6H6]- (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of [C6H6]- (g)

The 17 contributors listed below account for 91.2% of the provenance of ΔfH° of [C6H6]- (g).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
16.26870.1 [C6H6]- (g) → C6H6 (g) ΔrH°(0 K) = -1.12 ± 0.03 eVBurrow 1987
16.26870.5 [C6H6]- (g) → C6H6 (g) ΔrH°(0 K) = -1.15 ± 0.03 eVJordan 1976, Jordan 1976a, Jordan 1978
10.06870.3 [C6H6]- (g) → C6H6 (g) ΔrH°(0 K) = -1.086 ± 0.03 (×1.269) eVMathur 1976a
9.16870.2 [C6H6]- (g) → C6H6 (g) ΔrH°(0 K) = -1.13 ± 0.04 eVFrazier 1978
5.86870.4 [C6H6]- (g) → C6H6 (g) ΔrH°(0 K) = -1.14 ± 0.05 eVSanche 1973
5.86870.7 [C6H6]- (g) → C6H6 (g) ΔrH°(0 K) = -1.15 ± 0.05 eVBoness 1967
5.86870.14 [C6H6]- (g) → C6H6 (g) ΔrH°(0 K) = -1.124 ± 0.050 eVRuscic W1RO
3.57279.1 [C6H5F]- (g) → C6H5F (g) ΔrH°(0 K) = -0.82 ± 0.04 eVFrazier 1978
2.96870.6 [C6H6]- (g) → C6H6 (g) ΔrH°(0 K) = -1.07 ± 0.07 eVLarkin 1972
2.37280.1 [C6H5F]- (g) C6H6 (g) → C6H5F (g) [C6H6]- (g) ΔrH°(0 K) = 0.31 ± 0.03 eVFrazier 1978, est unc
2.27279.7 [C6H5F]- (g) → C6H5F (g) ΔrH°(0 K) = -0.849 ± 0.050 eVRuscic W1RO
2.06870.9 [C6H6]- (g) → C6H6 (g) ΔrH°(0 K) = -1.144 ± 0.085 eVRuscic G3
2.06870.10 [C6H6]- (g) → C6H6 (g) ΔrH°(0 K) = -1.101 ± 0.085 eVRuscic G3X
1.97279.2 [C6H5F]- (g) → C6H5F (g) ΔrH°(0 K) = -0.89 ± 0.05 (×1.067) eVJordan 1976
1.86870.13 [C6H6]- (g) → C6H6 (g) ΔrH°(0 K) = -1.077 ± 0.090 eVRuscic CBS-n
1.76870.12 [C6H6]- (g) → C6H6 (g) ΔrH°(0 K) = -1.117 ± 0.092 eVRuscic CBS-n
1.37280.2 [C6H5F]- (g) C6H6 (g) → C6H5F (g) [C6H6]- (g) ΔrH°(0 K) = 0.26 ± 0.04 eVJordan 1976, est unc

Top 10 species with enthalpies of formation correlated to the ΔfH° of [C6H6]- (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
47.4 Fluorobenzene anion[C6H5F]- (g)c1ccc(cc1)[F-]-15.3-27.1± 1.6kJ/mol96.1029 ±
0.0048
34561-55-2*0
16.9 BenzeneC6H6 (g)c1ccccc1100.6883.17± 0.21kJ/mol78.1118 ±
0.0048
71-43-2*0
16.9 Benzene cation[C6H6]+ (g)c1ccc(cc1)[H+]992.57976.11± 0.21kJ/mol78.1113 ±
0.0048
34504-50-2*0
16.8 BenzeneC6H6 (cr,l)c1ccccc150.7749.23± 0.21kJ/mol78.1118 ±
0.0048
71-43-2*500
8.8 Phenide[C6H5]- (g)c1cccc[c-]1244.25230.83± 0.38kJ/mol77.1044 ±
0.0048
30922-78-2*0
7.7 FluorobenzeneC6H5F (g)c1ccc(cc1)F-96.05-111.73± 0.39kJ/mol96.1023 ±
0.0048
462-06-6*0
7.7 Fluorobenzene cation[C6H5F]+ (g)c1ccc(cc1)[F+]791.92776.90± 0.39kJ/mol96.1018 ±
0.0048
34468-25-2*0
7.7 FluorobenzeneC6H5F (cr,l)c1ccc(cc1)F-148.77-146.36± 0.39kJ/mol96.1023 ±
0.0048
462-06-6*500
7.5 Carbonic acidC(O)(OH)2 (aq, undissoc)OC(=O)O-698.673± 0.028kJ/mol62.0248 ±
0.0012
463-79-6*1000
6.4 Carbon dioxideCO2 (g)C(=O)=O-393.111-393.478± 0.015kJ/mol44.00950 ±
0.00100
124-38-9*0

Most Influential reactions involving [C6H6]- (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.2447280.1 [C6H5F]- (g) C6H6 (g) → C6H5F (g) [C6H6]- (g) ΔrH°(0 K) = 0.31 ± 0.03 eVFrazier 1978, est unc
0.1676870.5 [C6H6]- (g) → C6H6 (g) ΔrH°(0 K) = -1.15 ± 0.03 eVJordan 1976, Jordan 1976a, Jordan 1978
0.1676870.1 [C6H6]- (g) → C6H6 (g) ΔrH°(0 K) = -1.12 ± 0.03 eVBurrow 1987
0.1377280.2 [C6H5F]- (g) C6H6 (g) → C6H5F (g) [C6H6]- (g) ΔrH°(0 K) = 0.26 ± 0.04 eVJordan 1976, est unc
0.1087280.7 [C6H5F]- (g) C6H6 (g) → C6H5F (g) [C6H6]- (g) ΔrH°(0 K) = 0.275 ± 0.045 eVRuscic W1RO
0.1036870.3 [C6H6]- (g) → C6H6 (g) ΔrH°(0 K) = -1.086 ± 0.03 (×1.269) eVMathur 1976a
0.0946870.2 [C6H6]- (g) → C6H6 (g) ΔrH°(0 K) = -1.13 ± 0.04 eVFrazier 1978
0.0727280.4 [C6H5F]- (g) C6H6 (g) → C6H5F (g) [C6H6]- (g) ΔrH°(0 K) = 0.306 ± 0.055 eVRuscic G4
0.0617280.3 [C6H5F]- (g) C6H6 (g) → C6H5F (g) [C6H6]- (g) ΔrH°(0 K) = 0.252 ± 0.060 eVRuscic G3X
0.0606870.14 [C6H6]- (g) → C6H6 (g) ΔrH°(0 K) = -1.124 ± 0.050 eVRuscic W1RO
0.0606870.4 [C6H6]- (g) → C6H6 (g) ΔrH°(0 K) = -1.14 ± 0.05 eVSanche 1973
0.0606870.7 [C6H6]- (g) → C6H6 (g) ΔrH°(0 K) = -1.15 ± 0.05 eVBoness 1967
0.0347280.6 [C6H5F]- (g) C6H6 (g) → C6H5F (g) [C6H6]- (g) ΔrH°(0 K) = 0.267 ± 0.080 eVRuscic CBS-n
0.0306870.6 [C6H6]- (g) → C6H6 (g) ΔrH°(0 K) = -1.07 ± 0.07 eVLarkin 1972
0.0307280.5 [C6H5F]- (g) C6H6 (g) → C6H5F (g) [C6H6]- (g) ΔrH°(0 K) = 0.306 ± 0.085 eVRuscic CBS-n
0.0206870.9 [C6H6]- (g) → C6H6 (g) ΔrH°(0 K) = -1.144 ± 0.085 eVRuscic G3
0.0206870.10 [C6H6]- (g) → C6H6 (g) ΔrH°(0 K) = -1.101 ± 0.085 eVRuscic G3X
0.0186870.13 [C6H6]- (g) → C6H6 (g) ΔrH°(0 K) = -1.077 ± 0.090 eVRuscic CBS-n
0.0176870.12 [C6H6]- (g) → C6H6 (g) ΔrH°(0 K) = -1.117 ± 0.092 eVRuscic CBS-n


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.176 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   T. L. Nguyen et al, ongoing studies (2024)
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.