Selected ATcT [1, 2] enthalpy of formation based on version 1.176 of the Thermochemical Network [3]This version of ATcT results[3] was generated by additional expansion of version 1.172 to include species related to Criegee intermediates that are involved in several ongoing studies[4].
|
Hydrogen fluoride |
Formula: HF (aq, 20 H2O) |
CAS RN: 7664-39-3 |
ATcT ID: 7664-39-3*818 |
SMILES: F |
InChI: InChI=1S/FH/h1H |
InChIKey: KRHYYFGTRYWZRS-UHFFFAOYSA-N |
Hills Formula: F1H1 |
2D Image: |
|
Aliases: HF; Hydrogen fluoride; Hydrogen monofluoride; Hydrofluoric acid; Fluorhydric acid; Fluorohydric acid; Fluorohydrogen; Fluoric acid; Fluorine hydride; Fluorine monohydride |
Relative Molecular Mass: 20.006343 ± 0.000070 |
ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units |
---|
| -321.83 | ± 0.11 | kJ/mol |
|
Top contributors to the provenance of ΔfH° of HF (aq, 20 H2O)The 20 contributors listed below account only for 81.4% of the provenance of ΔfH° of HF (aq, 20 H2O). A total of 33 contributors would be needed to account for 90% of the provenance.
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 21.6 | 544.2 | H2O (cr,l) + F2 (g) → 2 HF (aq, 5 H2O) + 1/2 O2 (g)  | ΔrH°(298.15 K) = -356.66 ± 0.40 kJ/mol | Paulechka 2020, Johnson 1987, Vorobev 1960, Hummel 1959, Johnson 1973 | 8.1 | 8540.1 | SiO2 (vitr) + 2 F2 (g) → SiF4 (g) + O2 (g)  | ΔrH°(298.15 K) = -170.04 ± 0.25 kcal/mol | Wise 1963, Wise 1963 | 7.1 | 486.1 | 1/2 H2 (g) + 1/2 F2 (g) → HF (l)  | ΔrH°(298.15 K) = -303.56 ± 0.27 (×1.354) kJ/mol | Settle 1994, Johnson 1973, note HF | 5.7 | 543.1 | H2O (cr,l) + F2 (g) → 2 HF (aq, 3 H2O) + 1/2 O2 (g)  | ΔrH°(298.15 K) = -355.46 ± 0.80 kJ/mol | Paulechka 2020, Good 1966, Gunn 1965, Johnson 1966, Domalski 1967a, Gross 1967 | 5.7 | 546.1 | SiF4 (g) + 2 H2O (cr,l) → Si (cr,l) + O2 (g) + 4 HF (aq, 5 H2O)  | ΔrH°(298.15 K) = 899.77 ± 1.20 kJ/mol | Paulechka 2020, Vorobev 1960, Hummel 1959, Johnson 1987, Good 1964, Good 1964, Johnson 1973 | 4.2 | 8539.1 | SiO2 (cr,l) + 2 F2 (g) → SiF4 (g) + O2 (g)  | ΔrH°(298.15 K) = -168.26 ± 0.28 (×1.269) kcal/mol | Wise 1963, Wise 1963 | 3.2 | 537.3 | HF (g) → HF (aq)  | ΔrH°(298.15 K) = -14.81 ± 0.10 kcal/mol | Vanderzee 1971, Westrum 1949, Davis 1961, Ruterjans 1969 | 3.2 | 497.1 | HF (l) → HF (aq, 20 H2O)  | ΔrH°(298.15 K) = -4.4535 ± 0.0045 kcal/mol | Johnson 1973, Paulechka 2020 | 3.2 | 545.1 | SiF4 (g) + 2 H2O (cr,l) → SiO2 (cr, quartz) + 4 HF (aq, 5 H2O)  | ΔrH°(298.15 K) = -11.11 ± 0.37 kJ/mol | Paulechka 2020, Vorobev 1960, Hummel 1959, Johnson 1987, Good 1964, Good 1964, Kilday 1973, Kilday 1973, Johnson 1973 | 2.6 | 2150.1 | NF3 (g) + 3/2 H2 (g) → 1/2 N2 (g) + 3 HF (aq, 100 H2O)  | ΔrH°(298.15 K) = -199.46 ± 0.22 kcal/mol | Sinke 1965a | 2.3 | 5998.1 | CF4 (g) + 2 H2O (cr,l) → CO2 (g) + 4 HF (aq, 20 H2O)  | ΔrH°(298.15 K) = -41.38 ± 0.32 (×1.874) kcal/mol | Cox 1965, as quoted by Cox 1970, Domalski 1967 | 2.0 | 492.1 | HF (l) → HF (aq, 5 H2O)  | ΔrH°(298.15 K) = -4.3298 ± 0.0060 kcal/mol | Johnson 1973, Paulechka 2020 | 1.9 | 544.1 | H2O (cr,l) + F2 (g) → 2 HF (aq, 5 H2O) + 1/2 O2 (g)  | ΔrH°(298.15 K) = -357.38 ± 1.34 kJ/mol | Paulechka 2020, Rudzitis 1964, Torgeson 1948, Shomate 1943, CODATA Key Vals, Parker 1965 | 1.7 | 536.1 | HF (g) + [OH]- (aq) → F- (aq) + H2O (cr,l)  | ΔrH°(298.15 K) = -28.065 ± 0.10 (×1.354) kcal/mol | Vanderzee 1971 | 1.7 | 7596.1 | CH2F2 (g) + O2 (g) → CO2 (g) + 2 HF (aq, 23 H2O)  | ΔrH°(298.15 K) = -139.80 ± 0.22 (×1.445) kcal/mol | Neugebauer 1958, Paulechka 2019 | 1.6 | 8499.1 | Si (cr,l) + O2 (g) → SiO2 (cr,l)  | ΔrH°(298.15 K) = -217.58 ± 0.35 (×1.164) kcal/mol | Good 1964, Good 1964, Good 1962, King 1951 | 1.3 | 2152.1 | 1/2 N2 (g) + 3/2 F2 (g) → NF3 (g)  | ΔrH°(298.15 K) = -31.44 ± 0.30 kcal/mol | Sinke 1967 | 1.2 | 529.1 | HF (aq, 5500 H2O) → HF (aq)  | ΔrH°(298.15 K) = -10.16 ± 0.10 kJ/mol | Paulechka 2020, Hefter 1984, Kleboth 1970, Baumann 1969, Hepler 1953, Ellis 1963, Broene 1947, Hamer 1970 | 1.1 | 8538.1 | Si (cr,l) + 2 F2 (g) → SiF4 (g)  | ΔrH°(298.15 K) = -385.98 ± 0.19 kcal/mol | Wise 1963, Wise 1963, Wise 1962 | 1.1 | 528.1 | HF (l) → HF (aq, 5500 H2O)  | ΔrH°(298.15 K) = -5.1110 ± 0.0220 kcal/mol | Johnson 1973, Paulechka 2020 |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of HF (aq, 20 H2O) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 98.2 | Hydrogen fluoride | HF (l) | | | -303.201 | ± 0.099 | kJ/mol | 20.006343 ± 0.000070 | 7664-39-3*590 | 97.7 | Hydrogen fluoride | HF (aq, 250 H2O) | | | -322.12 | ± 0.10 | kJ/mol | 20.006343 ± 0.000070 | 7664-39-3*908 | 97.7 | Hydrogen fluoride | HF (aq, 264.3 H2O) | | | -322.13 | ± 0.10 | kJ/mol | 20.006343 ± 0.000070 | 7664-39-3*909 | 97.7 | Hydrogen fluoride | HF (aq, 300 H2O) | | | -322.17 | ± 0.10 | kJ/mol | 20.006343 ± 0.000070 | 7664-39-3*831 | 97.7 | Hydrogen fluoride | HF (aq, 200 H2O) | | | -322.08 | ± 0.10 | kJ/mol | 20.006343 ± 0.000070 | 7664-39-3*830 | 97.5 | Hydrogen fluoride | HF (aq, 400 H2O) | | | -322.26 | ± 0.10 | kJ/mol | 20.006343 ± 0.000070 | 7664-39-3*832 | 97.4 | Hydrogen fluoride | HF (aq, 500 H2O) | | | -322.35 | ± 0.10 | kJ/mol | 20.006343 ± 0.000070 | 7664-39-3*833 | 97.4 | Hydrogen fluoride | HF (aq, 100 H2O) | | | -322.01 | ± 0.10 | kJ/mol | 20.006343 ± 0.000070 | 7664-39-3*828 | 97.1 | Hydrogen fluoride | HF (aq, 55.51 H2O) | | | -321.96 | ± 0.10 | kJ/mol | 20.006343 ± 0.000070 | 7664-39-3*891 | 97.1 | Hydrogen fluoride | HF (aq, 600 H2O) | | | -322.43 | ± 0.10 | kJ/mol | 20.006343 ± 0.000070 | 7664-39-3*834 |
|
Most Influential reactions involving HF (aq, 20 H2O)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.998 | 497.1 | HF (l) → HF (aq, 20 H2O)  | ΔrH°(298.15 K) = -4.4535 ± 0.0045 kcal/mol | Johnson 1973, Paulechka 2020 | 0.032 | 5998.1 | CF4 (g) + 2 H2O (cr,l) → CO2 (g) + 4 HF (aq, 20 H2O)  | ΔrH°(298.15 K) = -41.38 ± 0.32 (×1.874) kcal/mol | Cox 1965, as quoted by Cox 1970, Domalski 1967 | 0.018 | 7296.1 | C6F6 (cr,l) + 9/2 O2 (g) + 3 H2O (cr,l) → 6 CO2 (g) + 6 HF (aq, 20 H2O)  | ΔrH°(298.15 K) = -2443.6 ± 1.2 (×6.304) kJ/mol | Cox 1969, Cox 1964 | 0.004 | 6611.1 | CH3CHF2 (g) + 5/2 O2 (g) → 2 CO2 (g) + 2 HF (aq, 20 H2O) + H2O (cr,l)  | ΔrH°(298.15 K) = -291.5 ± 2.0 kcal/mol | Kolesov 1968, as quoted by Cox 1970 |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.176 of the Thermochemical Network (2024); available at ATcT.anl.gov |
4
|
|
T. L. Nguyen et al, ongoing studies (2024)
|
5
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
6
|
|
B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019)
[DOI: 10.1016/B978-0-444-64087-1.00001-2]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|