Selected ATcT [1, 2] enthalpy of formation based on version 1.176 of the Thermochemical Network [3]This version of ATcT results[3] was generated by additional expansion of version 1.172 to include species related to Criegee intermediates that are involved in several ongoing studies[4].
|
Dioxosilane |
Formula: SiO2 (vitr) |
CAS RN: 7631-86-9 |
ATcT ID: 7631-86-9*520 |
SMILES: O=[Si]=O |
InChI: InChI=1S/O2Si/c1-3-2 |
InChIKey: VYPSYNLAJGMNEJ-UHFFFAOYSA-N |
Hills Formula: O2Si1 |
2D Image: |
|
Aliases: SiO2; Dioxosilane; Silicon dioxide; Quartz; alpha-Quartz; beta-Quartz; Cristobalite; Tridymite; Aventurine; Silica; Silicon oxide; Silicon (IV) oxide; 14808-60-7; 14464-46-1; 99493-55-7; 15468-32-3; 60676-86-0 |
Relative Molecular Mass: 60.08430 ± 0.00067 |
ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units |
---|
-826.32 | -902.25 | ± 0.64 | kJ/mol |
|
Top contributors to the provenance of ΔfH° of SiO2 (vitr)The 17 contributors listed below account for 90.2% of the provenance of ΔfH° of SiO2 (vitr).
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 20.5 | 8538.1 | Si (cr,l) + 2 F2 (g) → SiF4 (g)  | ΔrH°(298.15 K) = -385.98 ± 0.19 kcal/mol | Wise 1963, Wise 1963, Wise 1962 | 17.3 | 546.1 | SiF4 (g) + 2 H2O (cr,l) → Si (cr,l) + O2 (g) + 4 HF (aq, 5 H2O)  | ΔrH°(298.15 K) = 899.77 ± 1.20 kJ/mol | Paulechka 2020, Vorobev 1960, Hummel 1959, Johnson 1987, Good 1964, Good 1964, Johnson 1973 | 12.7 | 8499.1 | Si (cr,l) + O2 (g) → SiO2 (cr,l)  | ΔrH°(298.15 K) = -217.58 ± 0.35 (×1.164) kcal/mol | Good 1964, Good 1964, Good 1962, King 1951 | 8.4 | 545.1 | SiF4 (g) + 2 H2O (cr,l) → SiO2 (cr, quartz) + 4 HF (aq, 5 H2O)  | ΔrH°(298.15 K) = -11.11 ± 0.37 kJ/mol | Paulechka 2020, Vorobev 1960, Hummel 1959, Johnson 1987, Good 1964, Good 1964, Kilday 1973, Kilday 1973, Johnson 1973 | 7.1 | 8540.1 | SiO2 (vitr) + 2 F2 (g) → SiF4 (g) + O2 (g)  | ΔrH°(298.15 K) = -170.04 ± 0.25 kcal/mol | Wise 1963, Wise 1963 | 5.6 | 8538.3 | Si (cr,l) + 2 F2 (g) → SiF4 (g)  | ΔrH°(298.15 K) = -1615.78 ± 0.46 (×3.292) kJ/mol | Johnson 1986, Johnson 1986 | 3.0 | 544.2 | H2O (cr,l) + F2 (g) → 2 HF (aq, 5 H2O) + 1/2 O2 (g)  | ΔrH°(298.15 K) = -356.66 ± 0.40 kJ/mol | Paulechka 2020, Johnson 1987, Vorobev 1960, Hummel 1959, Johnson 1973 | 2.7 | 8539.1 | SiO2 (cr,l) + 2 F2 (g) → SiF4 (g) + O2 (g)  | ΔrH°(298.15 K) = -168.26 ± 0.28 (×1.269) kcal/mol | Wise 1963, Wise 1963 | 2.0 | 8481.2 | Si (cr,l) → Si (g)  | ΔrG°(1525 K) = 231.1 ± 2.0 kJ/mol | Batdorf 1959, 3rd Law | 1.8 | 8631.1 | SiH3SiH3 (g) → 2 Si (cr,l) + 3 H2 (g)  | ΔrH°(298.15 K) = -19.1 ± 0.6 (×1.61) kcal/mol | Gunn 1961, est unc | 1.7 | 545.2 | SiF4 (g) + 2 H2O (cr,l) → SiO2 (cr, quartz) + 4 HF (aq, 5 H2O)  | ΔrH°(298.15 K) = -11.95 ± 0.25 (×3.221) kJ/mol | Paulechka 2020, Vorobev 1960, Hummel 1959, Johnson 1987, Good 1964, Good 1964, Johnson 1982, Johnson 1973 | 1.6 | 8595.1 | SiH4 (g) → Si (cr,l) + 2 H2 (g)  | ΔrH°(298.15 K) = -8.3 ± 0.5 kcal/mol | Gunn 1961, Gurvich TPIS, est unc | 1.6 | 8503.6 | SiO2 (cr, quartz) → SiO2 (vitr)  | ΔrH°(298.15 K) = 2.32 ± 0.06 kcal/mol | Wietzel 1921, Kilday 1973, Kilday 1973 | 1.1 | 8503.4 | SiO2 (cr, quartz) → SiO2 (vitr)  | ΔrH°(298.15 K) = 2.33 ± 0.07 kcal/mol | Kilday 1973, Kilday 1973 | 0.8 | 486.1 | 1/2 H2 (g) + 1/2 F2 (g) → HF (l)  | ΔrH°(298.15 K) = -303.56 ± 0.27 (×1.354) kJ/mol | Settle 1994, Johnson 1973, note HF | 0.7 | 8481.3 | Si (cr,l) → Si (g)  | ΔrH°(1932 K) = 393.1 ± 2.5 (×1.297) kJ/mol | Drowart 1960, 2nd Law, Gurvich TPIS | 0.7 | 543.1 | H2O (cr,l) + F2 (g) → 2 HF (aq, 3 H2O) + 1/2 O2 (g)  | ΔrH°(298.15 K) = -355.46 ± 0.80 kJ/mol | Paulechka 2020, Good 1966, Gunn 1965, Johnson 1966, Domalski 1967a, Gross 1967 |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of SiO2 (vitr) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 97.0 | Dioxosilane | SiO2 (cr, quartz) | | -906.77 | -911.75 | ± 0.63 | kJ/mol | 60.08430 ± 0.00067 | 7631-86-9*505 | 97.0 | Dioxosilane | SiO2 (cr,l) | | -906.77 | -911.75 | ± 0.63 | kJ/mol | 60.08430 ± 0.00067 | 7631-86-9*500 | 91.9 | Dioxosilane | SiO2 (cr, cristobalite) | | -904.07 | -908.93 | ± 0.68 | kJ/mol | 60.08430 ± 0.00067 | 7631-86-9*510 | 70.0 | Tetrafluorosilane | SiF4 (g) | | -1608.76 | -1614.27 | ± 0.52 | kJ/mol | 104.07911 ± 0.00030 | 7783-61-1*0 | 56.6 | Oxosilylene | SiO (g) | | -98.37 | -97.22 | ± 0.54 | kJ/mol | 44.08490 ± 0.00042 | 10097-28-6*0 | 51.5 | Silicon atom dication | [Si]+2 (g) | | 2814.00 | 2816.98 | ± 0.56 | kJ/mol | 28.08440 ± 0.00030 | 14175-55-4*0 | 51.5 | Silicon cation | Si+ (g) | | 1236.86 | 1240.99 | ± 0.56 | kJ/mol | 28.08495 ± 0.00030 | 14067-07-3*0 | 51.5 | Silicon anion | Si- (g) | | 316.28 | 319.26 | ± 0.56 | kJ/mol | 28.08605 ± 0.00030 | 14337-02-1*0 | 51.5 | Silicon | Si (g) | | 450.34 | 454.68 | ± 0.56 | kJ/mol | 28.08550 ± 0.00030 | 7440-21-3*0 | 51.5 | Silicon atom trication | [Si]+3 (g) | | 6045.58 | 6048.56 | ± 0.56 | kJ/mol | 28.08385 ± 0.00030 | 14175-56-5*0 |
|
Most Influential reactions involving SiO2 (vitr)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.407 | 8504.2 | SiO2 (cr, cristobalite) → SiO2 (vitr)  | ΔrH°(347.85 K) = 1.55 ± 0.10 kcal/mol | Kracek 1953, est unc | 0.381 | 8503.6 | SiO2 (cr, quartz) → SiO2 (vitr)  | ΔrH°(298.15 K) = 2.32 ± 0.06 kcal/mol | Wietzel 1921, Kilday 1973, Kilday 1973 | 0.280 | 8503.4 | SiO2 (cr, quartz) → SiO2 (vitr)  | ΔrH°(298.15 K) = 2.33 ± 0.07 kcal/mol | Kilday 1973, Kilday 1973 | 0.194 | 8540.1 | SiO2 (vitr) + 2 F2 (g) → SiF4 (g) + O2 (g)  | ΔrH°(298.15 K) = -170.04 ± 0.25 kcal/mol | Wise 1963, Wise 1963 | 0.137 | 8503.3 | SiO2 (cr, quartz) → SiO2 (vitr)  | ΔrH°(347.85 K) = 2.18 ± 0.10 kcal/mol | Kracek 1953, est unc | 0.098 | 8504.1 | SiO2 (cr, cristobalite) → SiO2 (vitr)  | ΔrH°(970 K) = 0.95 ± 0.15 (×1.354) kcal/mol | Holm 1967 | 0.042 | 8503.5 | SiO2 (cr, quartz) → SiO2 (vitr)  | ΔrH°(298.15 K) = 2.21 ± 0.18 kcal/mol | Mulert 1912, Kilday 1973, Kilday 1973 | 0.034 | 8503.2 | SiO2 (cr, quartz) → SiO2 (vitr)  | ΔrH°(298.15 K) = 2.27 ± 0.20 kcal/mol | Hummel 1959, Holm 1967 | 0.012 | 8503.1 | SiO2 (cr, quartz) → SiO2 (vitr)  | ΔrH°(970 K) = 1.40 ± 0.15 (×2.181) kcal/mol | Holm 1967 | 0.000 | 8596.1 | SiH4 (g) + 2 O2 (g) → SiO2 (vitr) + 2 H2O (cr,l)  | ΔrH°(291 K) = -325.5 ± 10 (×3.513) kcal/mol | Ogier 1880, est unc | 0.000 | 8596.2 | SiH4 (g) + 2 O2 (g) → SiO2 (vitr) + 2 H2O (cr,l)  | ΔrH°(293.15 K) = -325.2 ± 1.2 (×29.34) kcal/mol | Feher 1963, Feher 1964 |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.176 of the Thermochemical Network (2024); available at ATcT.anl.gov |
4
|
|
T. L. Nguyen et al, ongoing studies (2024)
|
5
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
6
|
|
B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019)
[DOI: 10.1016/B978-0-444-64087-1.00001-2]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|