Selected ATcT [1, 2] enthalpy of formation based on version 1.156 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.148 to include species relevant to a recent study of the oxidation of ethylene [4] as well as new measurements that led to refining the thermochemistry of CF and SiF and their cations [5].

Propylene cation

Formula: [CH3CHCH2]+ (g)
CAS RN: 34504-10-4
ATcT ID: 34504-10-4*0
SMILES: CC=[CH2+]
InChI: InChI=1S/C3H6/c1-3-2/h3H,1H2,2H3/q+1
InChIKey: WSHMEDZDSQSLKJ-UHFFFAOYSA-N
Hills Formula: C3H6+

2D Image:

CC=[CH2+]
Aliases: [CH3CHCH2]+; Propylene cation; Propylene ion (1+); 1-Propylene cation; 1-Propylene ion (1+); 1-Propene cation; 1-Propene ion (1+); Propene cation; Propene ion (1+); Methylethylene cation; Methylethylene ion (1+); CH3CHCH2+; [CH2CHCH3]+; CH2CHCH3+
Relative Molecular Mass: 42.0792 ± 0.0024

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
975.20961.67± 0.18kJ/mol

3D Image of [CH3CHCH2]+ (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of [CH3CHCH2]+ (g)

The 20 contributors listed below account only for 40.9% of the provenance of ΔfH° of [CH3CHCH2]+ (g).
A total of 687 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
11.53258.1 CH3CHCH2 (g) H2 (g) → CH3CH2CH3 (g) ΔrH°(355.15 K) = -30.122 ± 0.060 kcal/molKistiakowsky 1935a
5.13257.1 CH3CHCH2 (g) + 9/2 O2 (g) → 3 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -2057.72 ± 0.62 kJ/molRossini 1937
4.02359.1 H2 (g) C (graphite) → CH4 (g) ΔrG°(1165 K) = 37.521 ± 0.068 kJ/molSmith 1946, note COf, 3rd Law
3.3125.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
1.32214.7 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.464 ± 0.024 kJ/molHawtin 1966, note CO2e
1.33267.12 CH2(CH2CH2) (g) → CH3CHCH2 (g) ΔrH°(0 K) = -8.76 ± 0.2 kcal/molAllen 2016, est unc
1.33260.14 CH3CHCH2 (g) CH3CH3 (g) → CH3CH2CH3 (g) CH2CH2 (g) ΔrH°(0 K) = 11.35 ± 0.8 kJ/molFerguson 2013, est unc
1.23260.11 CH3CHCH2 (g) CH3CH3 (g) → CH3CH2CH3 (g) CH2CH2 (g) ΔrH°(0 K) = 2.72 ± 0.20 kcal/molKarton 2009b, Karton 2011
1.03724.6 CH3CHCHCH3 (g, trans) CH2CH2 (g) → 2 CH3CHCH2 (g) ΔrH°(0 K) = -0.78 ± 2.00 kJ/molKlippenstein 2017
1.03765.8 CH2CHCHCH2 (g) CH3CH3 (g) → 2 CH3CHCH2 (g) ΔrH°(0 K) = 12.89 ± 2.00 kJ/molKlippenstein 2017
1.03253.11 CH3CHCH2 (g) → 3 C (g) + 6 H (g) ΔrH°(0 K) = 811.53 ± 0.30 kcal/molKarton 2009b, Karton 2011
1.03427.11 CH2CCH2 (g) CH3CH3 (g) → CH3CHCH2 (g) CH2CH2 (g) ΔrH°(0 K) = -8.02 ± 0.20 kcal/molKarton 2009b, Karton 2011
1.03419.13 CH3CCH (g) CH2CH2 (g) → CH3CHCH2 (g) HCCH (g) ΔrH°(0 K) = 10.57 ± 0.8 kJ/molFerguson 2013, est unc
1.03259.4 CH3CHCH2 (g) + 2 HI (g) → CH3CH2CH3 (g) I2 (g) ΔrG°(597 K) = -5.79 ± 0.20 kcal/molNangia 1964, Nangia 1964a, 3rd Law, est unc
0.93765.7 CH2CHCHCH2 (g) CH3CH3 (g) → 2 CH3CHCH2 (g) ΔrH°(0 K) = 2.94 ± 0.50 kcal/molWheeler 2004, est unc
0.93210.1 CH3CH2CH3 (g) + 5 O2 (g) → 3 CO2 (g) + 4 H2O (cr,l) ΔrH°(298.15 K) = -2219.15 ± 0.46 (×1.091) kJ/molPittam 1972
0.93419.11 CH3CCH (g) CH2CH2 (g) → CH3CHCH2 (g) HCCH (g) ΔrH°(0 K) = 2.30 ± 0.20 kcal/molKarton 2011
0.83336.1 [CH2CHCH2]- (g) → CH2CHCH2 (g) ΔrH°(0 K) = 0.481 ± 0.008 eVWenthold 1996
0.72252.11 CO (g) → C (g) O (g) ΔrH°(0 K) = 1071.92 ± 0.10 (×1.242) kJ/molThorpe 2021
0.73257.2 CH3CHCH2 (g) + 9/2 O2 (g) → 3 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -491.83 ± 0.39 kcal/molWiberg 1968

Top 10 species with enthalpies of formation correlated to the ΔfH° of [CH3CHCH2]+ (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
99.9 PropeneCH3CHCH2 (g)CC=C34.9120.07± 0.18kJ/mol42.0797 ±
0.0024
115-07-1*0
81.4 Allyl anion[CH2CHCH2]- (g)C=C[CH2-]134.02123.01± 0.21kJ/mol41.0723 ±
0.0024
1724-46-5*0
60.1 PropaneCH3CH2CH3 (g)CCC-82.71-104.99± 0.15kJ/mol44.0956 ±
0.0025
74-98-6*0
47.3 n-ButaneCH3CH2CH2CH3 (g)CCCC-98.23-125.54± 0.19kJ/mol58.1222 ±
0.0033
106-97-8*0
46.5 EthaneCH3CH3 (g)CC-68.38-84.01± 0.12kJ/mol30.0690 ±
0.0017
74-84-0*0
43.7 EthyleneCH2CH2 (g)C=C60.9152.40± 0.11kJ/mol28.0532 ±
0.0016
74-85-1*0
43.6 Ethylene cation[CH2CH2]+ (g)C=[CH2+]1075.221068.01± 0.11kJ/mol28.0526 ±
0.0016
34470-02-5*0
38.7 iso-Propylium[CH3CHCH3]+ (g)C[CH+]C822.99805.91± 0.23kJ/mol43.0871 ±
0.0024
19252-53-0*0
37.2 Carbonic acidC(O)(OH)2 (aq, undissoc)OC(=O)O-698.670± 0.028kJ/mol62.0248 ±
0.0012
463-79-6*1000
36.4 PropyneCH3CCH (g)CC#C192.72185.57± 0.21kJ/mol40.0639 ±
0.0024
74-99-7*0

Most Influential reactions involving [CH3CHCH2]+ (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.9993254.1 CH3CHCH2 (g) → [CH3CHCH2]+ (g) ΔrH°(0 K) = 78602.0 ± 0.4 cm-1Vasilatou 2010, Vasilatou 2011
0.0853268.8 [CH2(CH2CH2)]+ (g) → [CH3CHCH2]+ (g) ΔrH°(0 K) = -11.20 ± 1.2 kcal/molRuscic W1RO
0.0723268.7 [CH2(CH2CH2)]+ (g) → [CH3CHCH2]+ (g) ΔrH°(0 K) = -9.85 ± 1.3 kcal/molRuscic CBS-n
0.0723268.4 [CH2(CH2CH2)]+ (g) → [CH3CHCH2]+ (g) ΔrH°(0 K) = -10.86 ± 1.3 kcal/molRuscic G4
0.0623268.3 [CH2(CH2CH2)]+ (g) → [CH3CHCH2]+ (g) ΔrH°(0 K) = -11.13 ± 1.4 kcal/molRuscic G3X
0.0483268.6 [CH2(CH2CH2)]+ (g) → [CH3CHCH2]+ (g) ΔrH°(0 K) = -10.50 ± 1.6 kcal/molRuscic CBS-n
0.0054919.6 CH3CH2CH2CH2OH (g) → [CH3CHCH2]+ (g) CH3OH (g) ΔrH°(0 K) = 10.690 ± 0.040 eVRuscic W1RO
0.0014919.3 CH3CH2CH2CH2OH (g) → [CH3CHCH2]+ (g) CH3OH (g) ΔrH°(0 K) = 10.683 ± 0.073 eVRuscic G4
0.0014919.2 CH3CH2CH2CH2OH (g) → [CH3CHCH2]+ (g) CH3OH (g) ΔrH°(0 K) = 10.711 ± 0.093 eVRuscic G3X
0.0004919.4 CH3CH2CH2CH2OH (g) → [CH3CHCH2]+ (g) CH3OH (g) ΔrH°(0 K) = 10.737 ± 0.099 eVRuscic CBS-n
0.0004919.5 CH3CH2CH2CH2OH (g) → [CH3CHCH2]+ (g) CH3OH (g) ΔrH°(0 K) = 10.773 ± 0.075 (×1.354) eVRuscic CBS-n
0.0003254.2 CH3CHCH2 (g) → [CH3CHCH2]+ (g) ΔrH°(0 K) = 78587 ± 4 (×3.748) cm-1Burrill 2001
0.0003254.3 CH3CHCH2 (g) → [CH3CHCH2]+ (g) ΔrH°(0 K) = 9.744 ± 0.003 eVMasclet 1973
0.0003254.4 CH3CHCH2 (g) → [CH3CHCH2]+ (g) ΔrH°(0 K) = 9.73 ± 0.01 (×1.542) eVKrassig 1974
0.0003254.5 CH3CHCH2 (g) → [CH3CHCH2]+ (g) ΔrH°(0 K) = 9.73 ± 0.02 eVWood 1979
0.0003254.15 CH3CHCH2 (g) → [CH3CHCH2]+ (g) ΔrH°(0 K) = 9.740 ± 0.040 eVRuscic W1RO
0.0003254.6 CH3CHCH2 (g) → [CH3CHCH2]+ (g) ΔrH°(0 K) = 9.73 ± 0.05 eVTraeger 1984, est unc
0.0003254.7 CH3CHCH2 (g) → [CH3CHCH2]+ (g) ΔrH°(0 K) = 9.72 ± 0.05 eVKatrib 1973a, est unc
0.0003254.11 CH3CHCH2 (g) → [CH3CHCH2]+ (g) ΔrH°(0 K) = 9.747 ± 0.073 eVRuscic G4
0.0003254.14 CH3CHCH2 (g) → [CH3CHCH2]+ (g) ΔrH°(0 K) = 9.794 ± 0.075 eVRuscic CBS-n


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.156 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   N. A. Seifert, B. Ruscic, R. Sivaramakrishnan, and K. Prozument,
The C2H4O Isomers in the Oxidation of Ethylene
J. Mol. Spectrosc. 398, 111847/1-8 (2023) [DOI: 10.1016/j.jms.2023.111847]
5   U. Jacovella, B. Ruscic, N. L. Chen, H.-L. Le, S. Boyé-Péronne, S. Hartweg, M. Roy-Chowdhury, G. A. Garcia, J.-C. Loison, and B. Gans,
Refining Thermochemical Properties of CF, SiF, and Their Cations by Combining Photoelectron Spectroscopy, Quantum Chemical Calculations, and the Active Thermochemical Tables Approach
Phys. Chem. Chem. Phys. 25, 30838-30847 (2023) [DOI: 10.1039/D3CP04244H]
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
7   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6] and Ruscic and Bross[7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.