Selected ATcT [1, 2] enthalpy of formation based on version 1.128 of the Thermochemical Network [3] This version of ATcT results[4] was generated by additional expansion of version 1.124 [5,6] to include new species relevant in the ring opening mechanism of cyclopropyl radical and cation.
|
Methanol |
Formula: CH3OH (g) |
CAS RN: 67-56-1 |
ATcT ID: 67-56-1*0 |
SMILES: CO |
InChI: InChI=1S/CH4O/c1-2/h2H,1H3 |
InChIKey: OKKJLVBELUTLKV-UHFFFAOYSA-N |
Hills Formula: C1H4O1 |
2D Image: |
|
Aliases: CH3OH; Methanol; Carbinol; Methylol; Methyl alcohol; Methyl hydroxide; Wood alcohol; H3COH; MeOH; CH3OH g; CH3OH l; CH3OH cr, l; CH3OH cr,l |
Relative Molecular Mass: 32.04186 ± 0.00090 |
ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units |
---|
-190.03 | -200.92 | ± 0.15 | kJ/mol |
|
3D Image of CH3OH (g) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of CH3OH (g)The 20 contributors listed below account only for 57.8% of the provenance of ΔfH° of CH3OH (g). A total of 368 contributors would be needed to account for 90% of the provenance.
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 15.9 | 2859.2 | CH3OH (g) + 3/2 O2 (g) → CO2 (g) + 2 H2O (cr,l)  | ΔrH°(298.15 K) = -182.72 ± 0.05 (×1.646) kcal/mol | Rossini 1932a, Domalski 1972, Weltner 1951, Rossini 1934a, note old units, mw conversion | 7.9 | 2909.1 | [CH2OH]+ (g) → CH2O (g) + H+ (g)  | ΔrH°(0 K) = 704.98 ± 0.39 kJ/mol | Czako 2009 | 3.8 | 2861.1 | CH3OH (g) → CH4 (g) + O (g, singlet)  | ΔrH°(0 K) = 133.94 ± 0.17 kcal/mol | Nguyen 2015a | 3.5 | 2860.1 | CH3OH (g) → CH3 (g) + OH (g)  | ΔrH°(0 K) = 90.12 ± 0.17 kcal/mol | Nguyen 2015a | 3.3 | 2863.1 | CH3OH (g) → CH2 (g, triplet) + H2O (g)  | ΔrH°(0 K) = 81.77 ± 0.17 kcal/mol | Nguyen 2015a | 3.3 | 2862.1 | CH3OH (g) → CH2 (g, singlet) + H2O (g)  | ΔrH°(0 K) = 90.84 ± 0.17 kcal/mol | Nguyen 2015a | 3.2 | 2933.1 | CH3OH (g) → CH2O (g) + H2 (g)  | ΔrH°(0 K) = 20.28 ± 0.17 kcal/mol | Nguyen 2015a | 2.9 | 2867.1 | CH3OH (cr,l) + 3/2 O2 (g) → CO2 (g) + 2 H2O (cr,l)  | ΔrH°(303.15 K) = -725.36 ± 0.13 (×6.169) kJ/mol | Chao 1965, mw conversion | 2.5 | 2979.6 | CH3OH (g) → HCOH (g, trans) + H2 (g)  | ΔrH°(0 K) = 72.44 ± 0.17 kcal/mol | Nguyen 2015a | 1.3 | 2572.8 | CH3NH2 (g) + H2O (g) → CH3OH (g) + NH3 (g)  | ΔrH°(0 K) = 4.07 ± 0.25 kcal/mol | Karton 2011 | 1.3 | 2907.1 | CH3OH (g) → [CH2OH]+ (g) + H (g)  | ΔrH°(0 K) = 11.6454 ± 0.0017 eV | Borkar 2011 | 1.2 | 2279.1 | 2 H2 (g) + C (graphite) → CH4 (g)  | ΔrG°(1165 K) = 37.521 ± 0.068 kJ/mol | Smith 1946, note COf, 3rd Law | 1.2 | 2852.11 | CH3OH (g) → 4 H (g) + C (g) + O (g)  | ΔrH°(0 K) = 480.94 ± 0.30 kcal/mol | Karton 2011 | 1.0 | 121.2 | 1/2 O2 (g) + H2 (g) → H2O (cr,l)  | ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/mol | Rossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930 | 0.9 | 2908.1 | CH2OH (g) → CH2O (g) + H (g)  | ΔrH°(0 K) = 10160 ± 70 cm-1 | Ryazanov 2012 | 0.8 | 2878.6 | CH2OH2 (g) → CH3OH (g)  | ΔrH°(0 K) = -81.83 ± 0.17 kcal/mol | Nguyen 2015a | 0.8 | 2908.10 | CH2OH (g) → CH2O (g) + H (g)  | ΔrH°(0 K) = 121.88 ± 0.46 (×1.915) kJ/mol | Marenich 2003b, note unc2 | 0.8 | 2858.1 | CH4 (g) + H2O (g) → CH3OH (g) + H2 (g)  | ΔrH°(0 K) = 115.40 ± 1.5 kJ/mol | Klippenstein 2017 | 0.7 | 2880.7 | CH2OH2 (g) → CH2 (g, singlet) + H2O (g)  | ΔrH°(0 K) = 9.01 ± 0.17 kcal/mol | Nguyen 2015a | 0.6 | 3001.11 | [HCO]+ (g) → H+ (g) + CO (g)  | ΔrH°(0 K) = 586.51 ± 0.2 kJ/mol | Czako 2008 |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of CH3OH (g) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 97.9 | Methanol | CH3OH (cr,l) | | -235.28 | -238.61 | ± 0.15 | kJ/mol | 32.04186 ± 0.00090 | 67-56-1*500 | 70.9 | Hydroxymethylium | [CH2OH]+ (g) | | 717.68 | 709.73 | ± 0.19 | kJ/mol | 31.03337 ± 0.00088 | 18682-95-6*0 | 44.9 | Methanol cation | [CH3OH]+ (g) | | 856.82 | 846.50 | ± 0.32 | kJ/mol | 32.04131 ± 0.00090 | 12538-91-9*0 | 37.5 | Methoxy | CH3O (g) | | 28.93 | 21.56 | ± 0.27 | kJ/mol | 31.03392 ± 0.00088 | 2143-68-2*0 | 37.5 | Methoxide | [CH3O]- (g) | | -122.46 | -130.19 | ± 0.27 | kJ/mol | 31.03447 ± 0.00088 | 3315-60-4*0 | 36.0 | Hydroxymethyl | CH2OH (g) | | -10.36 | -16.66 | ± 0.28 | kJ/mol | 31.03392 ± 0.00088 | 2597-43-5*0 | 28.9 | Methyl nitrite | CH3ONO (g) | | -55.49 | -66.16 | ± 0.44 | kJ/mol | 61.0401 ± 0.0010 | 624-91-9*0 | 28.9 | Methyl nitrite | CH3ONO (g, cis) | | -55.49 | -67.28 | ± 0.44 | kJ/mol | 61.0401 ± 0.0010 | 624-91-9*2 | 22.8 | Methyl nitrite | CH3ONO (cr,l) | | | -88.73 | ± 0.55 | kJ/mol | 61.0401 ± 0.0010 | 624-91-9*500 | 21.5 | Methanol dimer | (CH3OH)2 (g) | | -398.5 | -419.2 | ± 1.4 | kJ/mol | 64.0837 ± 0.0018 | 42845-44-3*0 |
|
Most Influential reactions involving CH3OH (g)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.989 | 6595.2 | [C6H5CH2]- (g) + CH3OH (g) → C6H5CH3 (g) + [CH3O]- (g)  | ΔrG°(300 K) = 0.16 ± 0.02 kcal/mol | Ellison 1996 | 0.770 | 7038.2 | CH3OH (g) + 2 ONO (g) → HON(O)O (g) + CH3ONO (g)  | ΔrG°(393.95 K) = -0.865 ± 0.105 kcal/mol | Silverwood 1967, 3rd Law | 0.611 | 2907.1 | CH3OH (g) → [CH2OH]+ (g) + H (g)  | ΔrH°(0 K) = 11.6454 ± 0.0017 eV | Borkar 2011 | 0.495 | 2855.8 | [CH3OH]- (g) → CH3OH (g)  | ΔrH°(0 K) = -1.062 ± 0.040 eV | Ruscic W1RO | 0.457 | 2878.6 | CH2OH2 (g) → CH3OH (g)  | ΔrH°(0 K) = -81.83 ± 0.17 kcal/mol | Nguyen 2015a | 0.347 | 2853.1 | CH3OH (g) → [CH3OH]+ (g)  | ΔrH°(0 K) = 10.853 ± 0.005 eV | Karlsson 1977 | 0.347 | 2853.2 | CH3OH (g) → [CH3OH]+ (g)  | ΔrH°(0 K) = 10.846 ± 0.005 eV | MacNeil 1977, note unc3 | 0.330 | 3915.1 | CH3OH (g) + [CH3CHOH]+ (g) → CH3CH2OH (g) + [CH2OH]+ (g)  | ΔrH°(0 K) = 0.848 ± 0.006 eV | Ruscic 1993, Ruscic 1994c | 0.289 | 3699.1 | CH3CHCCH2 (g) + [CH3O]- (g) → [CH3CCCH2]- (g) + CH3OH (g)  | ΔrG°(298.15 K) = 5 ± 2 kJ/mol | de Visser 1999, est unc | 0.249 | 2865.6 | CH3OH (cr,l) → CH3OH (g)  | ΔrH°(298.15 K) = 37.684 ± 0.060 kJ/mol | Svoboda 1973 | 0.249 | 2865.5 | CH3OH (cr,l) → CH3OH (g)  | ΔrH°(298.15 K) = 37.677 ± 0.060 kJ/mol | Fiock 1931, Rossini 1932a | 0.231 | 7025.6 | CH3N(O)O (g) + H2O (g) → CH3OH (g) + HN(O)O (g)  | ΔrH°(0 K) = 72.84 ± 2.0 kJ/mol | Klippenstein 2017 | 0.219 | 8182.5 | SiH(CH3)3 (g) + [CH3O]- (g) → [Si(CH3)3]- (g) + CH3OH (g)  | ΔrH°(0 K) = 4.26 ± 0.8 kcal/mol | Ruscic W1RO | 0.216 | 3886.7 | CH3CH2OH (g) + [CH3OH]+ (g) → [CH3CH2OH]+ (g) + CH3OH (g)  | ΔrH°(0 K) = -0.479 ± 0.036 eV | Ruscic W1RO, Bodi 2012 | 0.196 | 2907.2 | CH3OH (g) → [CH2OH]+ (g) + H (g)  | ΔrH°(0 K) = 11.649 ± 0.003 eV | Ruscic 1993 | 0.196 | 3993.6 | CH3OCH3 (g) + CH2OH (g) → CH3OCH2 (g) + CH3OH (g)  | ΔrH°(0 K) = 0.24 ± 2.00 kJ/mol | Klippenstein 2017 | 0.183 | 2865.4 | CH3OH (cr,l) → CH3OH (g)  | ΔrH°(298.15 K) = 37.66 ± 0.07 kJ/mol | Polak 1971, note unc | 0.176 | 2859.2 | CH3OH (g) + 3/2 O2 (g) → CO2 (g) + 2 H2O (cr,l)  | ΔrH°(298.15 K) = -182.72 ± 0.05 (×1.646) kcal/mol | Rossini 1932a, Domalski 1972, Weltner 1951, Rossini 1934a, note old units, mw conversion | 0.170 | 2871.1 | [CH3OH2]+ (g) + CH3CHCH2 (g) → CH3OH (g) + [CH3CHCH3]+ (g)  | ΔrG°(598 K) = 1.6 ± 0.6 kcal/mol | Szulejko 1993, 3rd Law | 0.163 | 2979.6 | CH3OH (g) → HCOH (g, trans) + H2 (g)  | ΔrH°(0 K) = 72.44 ± 0.17 kcal/mol | Nguyen 2015a |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.128 of the Thermochemical Network. Argonne National Laboratory, Lemont, Illinois 2023; available at ATcT.anl.gov [DOI: 10.17038/CSE/1997230]
|
4
|
|
N. Genossar, P. B. Changala, B. Gans, J.-C. Loison, S. Hartweg, M.-A. Martin-Drumel, G. A. Garcia, J. F. Stanton, B. Ruscic, and J. H. Baraban
Ring-Opening Dynamics of the Cyclopropyl Radical and Cation: the Transition State Nature of the Cyclopropyl Cation
J. Am. Chem. Soc. 144, 18518-18525 (2022)
[DOI: 10.1021/jacs.2c07740]
|
5
|
|
B. Ruscic and D. H. Bross
Active Thermochemical Tables: The Thermophysical and Thermochemical Properties of Methyl, CH3, and Methylene, CH2, Corrected for Nonrigid Rotor and Anharmonic Oscillator Effects.
Mol. Phys. e1969046 (2021)
[DOI: 10.1080/00268976.2021.1969046]
|
6
|
|
J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton,
Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions
J. Chem. Phys. 155, 184109 (2021)
[DOI: 10.1063/5.0069322]
|
7
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
8
|
|
B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019)
[DOI: 10.1016/B978-0-444-64087-1.00001-2]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|