Selected ATcT [1, 2] enthalpy of formation based on version 1.128 of the Thermochemical Network [3] This version of ATcT results[4] was generated by additional expansion of version 1.124 [5,6] to include new species relevant in the ring opening mechanism of cyclopropyl radical and cation.
|
Methyl nitrite |
Formula: CH3ONO (g) |
CAS RN: 624-91-9 |
ATcT ID: 624-91-9*0 |
SMILES: CON=O |
InChI: InChI=1S/CH3NO2/c1-4-2-3/h1H3 |
InChIKey: BLLFVUPNHCTMSV-UHFFFAOYSA-N |
Hills Formula: C1H3N1O2 |
2D Image: |
|
Aliases: CH3ONO; Methyl nitrite; Nitrous acid, methyl ester; Methyl ester of nitrous acid; Nitrosyl methoxide |
Relative Molecular Mass: 61.0401 ± 0.0010 |
ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units |
---|
-55.49 | -66.16 | ± 0.44 | kJ/mol |
|
3D Image of CH3ONO (g) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of CH3ONO (g)The 20 contributors listed below account only for 82.1% of the provenance of ΔfH° of CH3ONO (g). A total of 43 contributors would be needed to account for 90% of the provenance.
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 54.9 | 7038.2 | CH3OH (g) + 2 ONO (g) → HON(O)O (g) + CH3ONO (g)  | ΔrG°(393.95 K) = -0.865 ± 0.105 kcal/mol | Silverwood 1967, 3rd Law | 4.2 | 7038.1 | CH3OH (g) + 2 ONO (g) → HON(O)O (g) + CH3ONO (g)  | ΔrH°(393.95 K) = -15.808 ± 0.376 kcal/mol | Silverwood 1967, 2nd Law | 3.9 | 7040.6 | CH3ONO (g, cis) → CH3N(O)O (g)  | ΔrH°(0 K) = -6.02 ± 2.0 kJ/mol | Klippenstein 2017 | 2.9 | 2005.1 | 2 ONO (g) + 1/2 O2 (g) + H2O (g) → 2 HON(O)O (g)  | ΔrG°(371 K) = -6.04 ± 0.63 kJ/mol | Jones 1943, 3rd Law | 1.8 | 1696.3 | (NH4)NO3 (cr,l) → N2 (g) + 1/2 O2 (g) + 2 H2O (cr,l)  | ΔrH°(293.65 K) = -49.44 ± 0.06 kcal/mol | Becker 1934 | 1.4 | 2859.2 | CH3OH (g) + 3/2 O2 (g) → CO2 (g) + 2 H2O (cr,l)  | ΔrH°(298.15 K) = -182.72 ± 0.05 (×1.646) kcal/mol | Rossini 1932a, Domalski 1972, Weltner 1951, Rossini 1934a, note old units, mw conversion | 1.3 | 7044.1 | C (graphite) + 3/2 H2 (g) + O2 (g) + 1/2 N2 (g) → CH3ONO (cr,l)  | ΔrH°(298.15 K) = -20.329 ± 0.5 (×1.756) kcal/mol | Baldrey 1958, Gray 1958, note unc2 | 1.1 | 2004.1 | 3 ONO (g) + H2O (g) → NO (g) + 2 HON(O)O (g)  | ΔrH°(293.1 K) = -8.95 ± 0.24 kcal/mol | Forsythe 1942, Chambers 1937, Wilson 1940, apud Gurvich TPIS | 1.1 | 7042.5 | CH3ONO (g, cis) + H2O (g) → CH3OH (g) + HONO (g, trans)  | ΔrH°(0 K) = 7.30 ± 0.85 kcal/mol | Ruscic W1RO | 1.0 | 7037.1 | 2 CH3ONO (g) + 3/2 O2 (g) → 2 CO2 (g) + 3 H2O (l) + N2 (g)  | ΔrH°(298.15 K) = -359.4 ± 1.6 (×1.242) kcal/mol | Geiseler 1961 | 1.0 | 7042.4 | CH3ONO (g, cis) + H2O (g) → CH3OH (g) + HONO (g, trans)  | ΔrH°(0 K) = 7.48 ± 0.90 kcal/mol | Ruscic CBS-n | 1.0 | 7042.1 | CH3ONO (g, cis) + H2O (g) → CH3OH (g) + HONO (g, trans)  | ΔrH°(0 K) = 7.52 ± 0.90 kcal/mol | Ruscic G3X | 1.0 | 7042.2 | CH3ONO (g, cis) + H2O (g) → CH3OH (g) + HONO (g, trans)  | ΔrH°(0 K) = 7.02 ± 0.90 kcal/mol | Ruscic G4 | 0.8 | 2004.4 | 3 ONO (g) + H2O (g) → NO (g) + 2 HON(O)O (g)  | ΔrG°(298.15 K) = 10.33 ± 1.08 (×1.091) kJ/mol | Chambers 1937, 3rd Law | 0.8 | 7042.3 | CH3ONO (g, cis) + H2O (g) → CH3OH (g) + HONO (g, trans)  | ΔrH°(0 K) = 7.52 ± 1.0 kcal/mol | Ruscic CBS-n | 0.7 | 1459.2 | NO (g) → N (g) + O (g)  | ΔrH°(0 K) = 52400 ± 10 cm-1 | Dingle 1975 | 0.7 | 1459.1 | NO (g) → N (g) + O (g)  | ΔrH°(0 K) = 52400 ± 10 cm-1 | Callear 1970 | 0.6 | 2909.1 | [CH2OH]+ (g) → CH2O (g) + H+ (g)  | ΔrH°(0 K) = 704.98 ± 0.39 kJ/mol | Czako 2009 | 0.6 | 7040.5 | CH3ONO (g, cis) → CH3N(O)O (g)  | ΔrH°(0 K) = -1.91 ± 1.2 kcal/mol | Ruscic W1RO | 0.5 | 7040.4 | CH3ONO (g, cis) → CH3N(O)O (g)  | ΔrH°(0 K) = -1.86 ± 1.3 kcal/mol | Ruscic CBS-n |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of CH3ONO (g) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 100.0 | Methyl nitrite | CH3ONO (g, cis) | | -55.49 | -67.28 | ± 0.44 | kJ/mol | 61.0401 ± 0.0010 | 624-91-9*2 | 79.0 | Methyl nitrite | CH3ONO (cr,l) | | | -88.73 | ± 0.55 | kJ/mol | 61.0401 ± 0.0010 | 624-91-9*500 | 48.9 | Methyl nitrite | CH3ONO (g, trans) | | -52.38 | -64.34 | ± 0.89 | kJ/mol | 61.0401 ± 0.0010 | 624-91-9*1 | 43.2 | Ethyl nitrite | CH3CH2ONO (g, trans-cis) | | -81.24 | -99.97 | ± 0.87 | kJ/mol | 75.0666 ± 0.0017 | 109-95-5*1 | 43.2 | Ethyl nitrite | CH3CH2ONO (g) | | -81.24 | -98.64 | ± 0.87 | kJ/mol | 75.0666 ± 0.0017 | 109-95-5*0 | 28.9 | Methanol | CH3OH (g) | | -190.03 | -200.92 | ± 0.15 | kJ/mol | 32.04186 ± 0.00090 | 67-56-1*0 | 28.3 | Methanol | CH3OH (cr,l) | | -235.28 | -238.61 | ± 0.15 | kJ/mol | 32.04186 ± 0.00090 | 67-56-1*500 | 20.5 | Hydroxymethylium | [CH2OH]+ (g) | | 717.68 | 709.73 | ± 0.19 | kJ/mol | 31.03337 ± 0.00088 | 18682-95-6*0 | -20.4 | Nitric acid | HON(O)O (cr,l) | | -179.01 | -173.28 | ± 0.18 | kJ/mol | 63.01288 ± 0.00091 | 7697-37-2*500 | -24.4 | Nitric acid | HON(O)O (g) | | -124.48 | -134.19 | ± 0.17 | kJ/mol | 63.01288 ± 0.00091 | 7697-37-2*0 |
|
Most Influential reactions involving CH3ONO (g)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 1.000 | 7036.1 | CH3ONO (g) → CH3ONO (g, cis)  | ΔrH°(0 K) = 0 ± 0 cm-1 | Ruscic G3X, Ruscic CBS-n, Ruscic W1RO, Ruscic G4 | 0.991 | 7043.1 | CH3ONO (cr,l) → CH3ONO (g)  | ΔrH°(298.15 K) = 5.40 ± 0.08 kcal/mol | Baldrey 1958, Gray 1958, note unc2 | 0.770 | 7038.2 | CH3OH (g) + 2 ONO (g) → HON(O)O (g) + CH3ONO (g)  | ΔrG°(393.95 K) = -0.865 ± 0.105 kcal/mol | Silverwood 1967, 3rd Law | 0.060 | 7038.1 | CH3OH (g) + 2 ONO (g) → HON(O)O (g) + CH3ONO (g)  | ΔrH°(393.95 K) = -15.808 ± 0.376 kcal/mol | Silverwood 1967, 2nd Law | 0.010 | 7037.1 | 2 CH3ONO (g) + 3/2 O2 (g) → 2 CO2 (g) + 3 H2O (l) + N2 (g)  | ΔrH°(298.15 K) = -359.4 ± 1.6 (×1.242) kcal/mol | Geiseler 1961 | 0.004 | 7052.1 | CH3CH2ONO (g) + CH3O (g) → CH3CH2O (g) + CH3ONO (g)  | ΔrH°(500 K) = 1.3 ± 3 kcal/mol | Steacie 1937, Rebbert 1952, est unc |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.128 of the Thermochemical Network. Argonne National Laboratory, Lemont, Illinois 2023; available at ATcT.anl.gov [DOI: 10.17038/CSE/1997230]
|
4
|
|
N. Genossar, P. B. Changala, B. Gans, J.-C. Loison, S. Hartweg, M.-A. Martin-Drumel, G. A. Garcia, J. F. Stanton, B. Ruscic, and J. H. Baraban
Ring-Opening Dynamics of the Cyclopropyl Radical and Cation: the Transition State Nature of the Cyclopropyl Cation
J. Am. Chem. Soc. 144, 18518-18525 (2022)
[DOI: 10.1021/jacs.2c07740]
|
5
|
|
B. Ruscic and D. H. Bross
Active Thermochemical Tables: The Thermophysical and Thermochemical Properties of Methyl, CH3, and Methylene, CH2, Corrected for Nonrigid Rotor and Anharmonic Oscillator Effects.
Mol. Phys. e1969046 (2021)
[DOI: 10.1080/00268976.2021.1969046]
|
6
|
|
J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton,
Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions
J. Chem. Phys. 155, 184109 (2021)
[DOI: 10.1063/5.0069322]
|
7
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
8
|
|
B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019)
[DOI: 10.1016/B978-0-444-64087-1.00001-2]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|