Selected ATcT [1, 2] enthalpy of formation based on version 1.128 of the Thermochemical Network [3]

This version of ATcT results[4] was generated by additional expansion of version 1.124 [5,6] to include new species relevant in the ring opening mechanism of cyclopropyl radical and cation.

Hydroxyl

Formula: OH (g)
CAS RN: 3352-57-6
ATcT ID: 3352-57-6*0
SMILES: [OH]
InChI: InChI=1S/HO/h1H
InChIKey: TUJKJAMUKRIRHC-UHFFFAOYSA-N
Hills Formula: H1O1

2D Image:

[OH]
Aliases: OH; Hydroxyl; Oxidanyl; Hydroxyl radical; Hydroxy; Hydroxy radical; Hydroxide radical; Hydroxo radical; Oxygen hydride; Hydrogen oxide; HO
Relative Molecular Mass: 17.00734 ± 0.00031

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
37.27937.519± 0.023kJ/mol

3D Image of OH (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of OH (g)

The 20 contributors listed below account only for 66.2% of the provenance of ΔfH° of OH (g).
A total of 270 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
30.0121.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
8.82277.7 CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -890.578 ± 0.078 kJ/molSchley 2010
8.22279.1 H2 (g) C (graphite) → CH4 (g) ΔrG°(1165 K) = 37.521 ± 0.068 kJ/molSmith 1946, note COf, 3rd Law
2.1111.11 H2O (g) → O (g) + 2 H (g) ΔrH°(0 K) = 917.80 ± 0.15 kJ/molThorpe 2021
2.0153.1 OH (g) → [OH]+ (g) ΔrH°(0 K) = 104989 ± 5 (×2.278) cm-1Wiedmann 1992, note unc
1.7163.6 H2O (g) → [OH]+ (g) H (g) ΔrH°(0 K) = 18.1183 ± 0.0015 (×1.022) eVBodi 2014
1.4148.1 OH (g) → O (g) H (g) ΔrH°(0 K) = 35580 ± 15 cm-1Sun 2020
1.41702.1 N2 (g) + 3 H2O (cr,l) + 2 H+ (aq) → 3/2 O2 (g) + 2 [NH4]+ (aq) ΔrH°(298.15 K) = 141.292 ± 0.119 kcal/molVanderzee 1972c
1.22277.4 CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -890.61 ± 0.21 kJ/molDale 2002
1.1165.1 [OH]- (g) → O- (g) H (g) ΔrH°(0 K) = 4.7796 ± 0.0010 (×2.089) eVMartin 2001, est unc
1.0163.7 H2O (g) → [OH]+ (g) H (g) ΔrH°(0 K) = 18.1190 ± 0.002 eVBodi 2014
0.92172.11 CO (g) → C (g) O (g) ΔrH°(0 K) = 1071.92 ± 0.10 (×1.189) kJ/molThorpe 2021
0.8163.5 H2O (g) → [OH]+ (g) H (g) ΔrH°(0 K) = 18.1177 ± 0.0015 (×1.445) eVBodi 2014
0.8171.1 [OH]+ (g) → O+ (g) H (g) ΔrH°(0 K) = 40412.0 ± 2.2 cm-1Moselhy 1975, note unc
0.72277.8 CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -890.482 ± 0.260 kJ/molHaloua 2015
0.72277.6 CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -890.44 ± 0.26 kJ/molGOMB Ref Calorimeter, Alexandrov 2002
0.72189.3 CO (g) H2O (g) → CO2 (g) H2 (g) ΔrG°(893 K) = -6.369 ± 0.283 kJ/molMeyer 1938, note COi, 3rd Law
0.62182.2 CO (g) → C+ (g) O (g) ΔrH°(0 K) = 22.3713 ± 0.0015 eVNg 2007
0.51517.4 NNO (g) CO (g) → CO2 (g) N2 (g) ΔrH°(293.15 K) = -365.642 ± 0.243 kJ/molFenning 1933, note N2Oa
0.5221.4 HOOH (g) → 2 H (g) + 2 O (g) ΔrH°(0 K) = 1054.84 ± 0.56 kJ/molHarding 2008

Top 10 species with enthalpies of formation correlated to the ΔfH° of OH (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
100.0 Hydroxyde[OH]- (g)[OH-]-139.063-139.029± 0.023kJ/mol17.00789 ±
0.00031
14280-30-9*0
99.8 Oxonium[H3O]+ (aq)[OH3+]-285.799± 0.022kJ/mol19.02267 ±
0.00037
13968-08-6*800
99.8 WaterH2O (cr,l)O-286.271-285.799± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*500
99.8 WaterH2O (cr, l, eq.press.)O-286.273-285.801± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*499
99.8 WaterH2O (l)O-285.799± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*590
99.8 WaterH2O (l, eq.press.)O-285.801± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*589
99.8 WaterH2O (g, ortho)O-238.617-241.805± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*1
99.8 WaterH2O (g, para)O-238.902-241.805± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*2
99.8 WaterH2O (g)O-238.902-241.805± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*0
99.7 WaterH2O (cr)O-286.271-292.712± 0.023kJ/mol18.01528 ±
0.00033
7732-18-5*510

Most Influential reactions involving OH (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.972360.10 HOOO (g) → OH (g) O2 (g) ΔrG°(94.7 K) = 4.509 ± 0.128 kJ/molLe Picard 2010, 3rd Law, Tizniti 2010
0.917240.1 HOOH (g) → 2 OH (g) ΔrH°(0 K) = 17051.8 ± 3.4 cm-1Luo 1992
0.834155.1 [OH]- (g) → OH (g) ΔrH°(0 K) = 14740.982 ± 0.014 cm-1Goldfarb 2005, note unc, Delsart 2002
0.7291032.1 HOCl (g) → OH (g) Cl (g) ΔrH°(0 K) = 19287.9 ± 0.7 cm-1Barnes 1997
0.702206.3 (H2O)2 (g) → [H3O]+ (g) OH (g) ΔrH°(0 K) = 11.7556 ± 0.0020 eVBodi 2014
0.609160.3 H2O (g) → OH (g) H (g) ΔrH°(0 K) = 41145.92 ± 0.12 cm-1Boyarkin 2013
0.4102069.1 HOONO (g, cis, cis) → OH (g) ONO (g) ΔrH°(450 K) = 86.08 ± 0.54 kJ/molGolden 2003, Hippler 2002, 3rd Law
0.389160.2 H2O (g) → OH (g) H (g) ΔrH°(0 K) = 41145.94 ± 0.15 cm-1Maksyutenko 2006
0.3654743.2 CH3C(O)OH (g) → OH (g) [CH3CO]+ (g) ΔrH°(0 K) = 11.641 ± 0.008 eVShuman 2010
0.3411984.6 HOON (g, trans) → OH (g) NO (g) ΔrH°(0 K) = 25.6 ± 4 kJ/molTalipov 2013, est unc
0.2691032.2 HOCl (g) → OH (g) Cl (g) ΔrH°(0 K) = 19289.4 ± 0.7 (×1.646) cm-1Wedlock 1997
0.2204611.10 (OH)(CO) (g, vdW) → OH (g) CO (g) ΔrH°(0 K) = 310 ± 150 cm-1Pond 2003, Marshall 2003, est unc
0.2204611.9 (OH)(CO) (g, vdW) → OH (g) CO (g) ΔrH°(0 K) = 330 ± 150 cm-1Lester 2001, est unc
0.2071256.1 HOBr (g) Cl (g) → BrCl (g) OH (g) ΔrG°(298.15 K) = -10.14 ± 1.04 kJ/molLoewenstein 1984, Kukui 1996, Monks 1993a, Loewenstein 1984
0.1914609.4 HCO (g) + 2 OH (g) → HCOO (g, cis) H2O (g) ΔrH°(0 K) = -1.93 ± 1.60 kcal/molRuscic G4
0.1664609.3 HCO (g) + 2 OH (g) → HCOO (g, cis) H2O (g) ΔrH°(0 K) = -2.69 ± 1.72 kcal/molRuscic G3X
0.159155.3 [OH]- (g) → OH (g) ΔrH°(0 K) = 14741.02 ± 0.03 (×1.067) cm-1Smith 1997
0.1542074.1 OH (g) ONO (g) → HOONO (g) ΔrG°(450 K) = -22.06 ± 0.88 kJ/molHippler 2002, 3rd Law
0.154706.9 FOOF (g) + 2 OH (g) → HOOH (g) + 2 FO (g) ΔrH°(0 K) = -4.55 ± 0.25 kcal/molKarton 2009c
0.1451387.2 CF3I (g) OH (g) → HOI (g) CF3 (g) ΔrH°(320 K) = 22.6 ± 8.1 kJ/molGilles 2000, Marshall 2008


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.128 of the Thermochemical Network. Argonne National Laboratory, Lemont, Illinois 2023; available at ATcT.anl.gov
[DOI: 10.17038/CSE/1997230]
4   N. Genossar, P. B. Changala, B. Gans, J.-C. Loison, S. Hartweg, M.-A. Martin-Drumel, G. A. Garcia, J. F. Stanton, B. Ruscic, and J. H. Baraban
Ring-Opening Dynamics of the Cyclopropyl Radical and Cation: the Transition State Nature of the Cyclopropyl Cation
J. Am. Chem. Soc. 144, 18518-18525 (2022) [DOI: 10.1021/jacs.2c07740]
5   B. Ruscic and D. H. Bross
Active Thermochemical Tables: The Thermophysical and Thermochemical Properties of Methyl, CH3, and Methylene, CH2, Corrected for Nonrigid Rotor and Anharmonic Oscillator Effects.
Mol. Phys. e1969046 (2021) [DOI: 10.1080/00268976.2021.1969046]
6   J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton,
Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions
J. Chem. Phys. 155, 184109 (2021) [DOI: 10.1063/5.0069322]
7   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
8   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.