Selected ATcT [1, 2] enthalpy of formation based on version 1.128 of the Thermochemical Network [3]

This version of ATcT results[4] was generated by additional expansion of version 1.124 [5,6] to include new species relevant in the ring opening mechanism of cyclopropyl radical and cation.

Hydron

Formula: H+ (g)
CAS RN: 12408-02-5
ATcT ID: 12408-02-5*0
SMILES: [H+]
InChI: InChI=1S/H/q+1
InChIKey: ASSFXGJQJOXDAB-UHFFFAOYSA-N
InChI: InChI=1S/p+1
InChIKey: GPRLSGONYQIRFK-UHFFFAOYSA-N
Hills Formula: H1+

2D Image:

[H+]
Aliases: H+; Hydron; Hydrogen atom cation; Hydrogen atom ion (1+); Hydrogen cation; Hydrogen ion (1+); Atomic hydrogen cation; Atomic hydrogen ion (1+); Monohydrogen cation; Monohydrogen ion (1+); Proton; p+
Relative Molecular Mass: 1.007391 ± 0.000070

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
1528.0841530.047± 0.000kJ/mol

3D Image of H+ (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of H+ (g)

The 13 contributors listed below account for 90.4% of the provenance of ΔfH° of H+ (g).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
29.563.13 H2 (g) → [H2]+ (g) ΔrH°(0 K) = 124417.49113 ± 0.00074 cm-1Liu 2012, note unc
10.676.2 H (g) → H+ (g) ΔrH°(0 K) = 109678.7717426 ± 0.0000020 cm-1Liu 2009, note unc
10.676.1 H (g) → H+ (g) ΔrH°(0 K) = 109678.77174307 ± 0.00000020 cm-1Mohr 2016, Sprecher 2010, note unc, Tiesinga 2021
9.765.1 H2 (g, para) → H2 (g) ΔrH°(0 K) = 0.0 ± 0.0 cm-1triv
7.281.9 [H2]+ (g) → 2 H+ (g) ΔrH°(0 K) = 131058.121975 ± 0.000098 cm-1Liu 2009, note unc, Korobov 2006, Korobov 2006a, Korobov 2008
7.281.10 [H2]+ (g) → 2 H+ (g) ΔrH°(0 K) = 131058.1219937 ± 0.0000012 cm-1Korobov 2017, note unc
3.167.1 H2 (g, ortho) → [H2]+ (g) ΔrH°(0 K) = 124299.00429 ± 0.00071 cm-1Liu 2009, note unc, Hannemann 2006, Osterwalder 2004, Karr 2008, Korobov 2006, Korobov 2006a, Korobov 2008
2.559.16 H2 (g) → 2 H (g) ΔrH°(0 K) = 36118.069632 ± 0.000052 cm-1Puchalski 2019, note unc
2.559.10 H2 (g) → 2 H (g) ΔrH°(0 K) = 36118.06962 ± 0.00074 cm-1Liu 2012, note unc
1.881.4 [H2]+ (g) → 2 H+ (g) ΔrH°(0 K) = 131058.1216 ± 0.002 cm-1Frolov 1995, Moss 1993b, Howells 1990, est unc
1.881.5 [H2]+ (g) → 2 H+ (g) ΔrH°(0 K) = 131058.1237 ± 0.002 cm-1Gremaud 1998, Moss 1993b, Howells 1990, est unc
1.881.6 [H2]+ (g) → 2 H+ (g) ΔrH°(0 K) = 131058.1237 ± 0.002 cm-1Taylor 1999a, Moss 1993b, Howells 1990, est unc
1.881.7 [H2]+ (g) → 2 H+ (g) ΔrH°(0 K) = 131058.1237 ± 0.002 cm-1Hijikata 2009, Moss 1993b, Howells 1990, est unc

Top 10 species with enthalpies of formation correlated to the ΔfH° of H+ (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
77.6 Dihydrogen cation[H2]+ (g)[H][H+]1488.3641488.480± 0.000kJ/mol2.01533 ±
0.00014
12184-90-6*0
45.9 Dihydrogen cation[H2]+ (g, para)[H][H+]1488.3641488.480± 0.000kJ/mol2.01533 ±
0.00014
12184-90-6*2
45.0 DihydrogenH2 (g, ortho)[H][H]1.4170.019± 0.000kJ/mol2.01588 ±
0.00014
1333-74-0*1
40.7 Dihydrogen cation[H2]+ (g, ortho)[H][H+]1489.0601488.480± 0.000kJ/mol2.01533 ±
0.00014
12184-90-6*1
40.6 DihydrogenH2 (g, para)[H][H]-0.000-0.058± 0.000kJ/mol2.01588 ±
0.00014
1333-74-0*2
28.9 Deuterium hydride cation[HD]+ (g)[H][2H+]1490.4981490.587± 0.000kJ/mol3.021493 ±
0.000070
12181-16-7*0
26.0 Hydrogen atomH (g)[H]216.034217.998± 0.000kJ/mol1.007940 ±
0.000070
12385-13-6*0
21.3 Deuterium hydrideHD (g)[H][2H]0.3280.319± 0.000kJ/mol3.022042 ±
0.000070
13983-20-5*0
7.6 HydrideH- (g)[H-]143.264145.228± 0.000kJ/mol1.008489 ±
0.000070
12184-88-2*0
-2.2 Deuterium atom cationD+ (g)[2H+]1532.2101534.123± 0.000kJ/mol2.01355319809 ±
0.00000000040
14464-47-2*0

Most Influential reactions involving H+ (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.9618623.1 [HeH]+ (g) → He (g) H+ (g) ΔrH°(0 K) = 14874.215 ± 0.020 cm-1Pachucki 2012, note unc
0.737108.1 [HD]+ (g) → H+ (g) D+ (g) ΔrH°(0 K) = 131224.68415 ± 0.00012 cm-1Korobov 2008, Sprecher 2010, note unc
0.6818820.2 H2S (g) → H+ (g) [SH]- (g) ΔrH°(0 K) = 122458 ± 2 cm-1Kreis 2022
0.6322767.3 HCN (g) → H+ (g) [CN]- (g) ΔrH°(0 K) = 122246 ± 3 cm-1Suits 2006, Hu 2005
0.559784.1 HCl (g) → H+ (g) Cl- (g) ΔrH°(0 K) = 116289.0 ± 0.6 cm-1Martin 1998, note HCl
0.536479.1 HF (g) → H+ (g) F- (g) ΔrH°(0 K) = 129557.1 ± 0.9 cm-1Hu 2006a, Hu 2005a
0.49694.6 [H3]+ (g) → 3 H+ (g) ΔrH°(0 K) = 290399.69 ± 1.5 cm-1Cencek 1998, Jaquet 1998, note H3+, Lindsay 2001, Rohse 1993
0.49694.7 [H3]+ (g) → 3 H+ (g) ΔrH°(0 K) = 290398.83 ± 1.5 cm-1Cencek 1998, Matyus 2007, Lindsay 2001, Rohse 1993
0.434479.2 HF (g) → H+ (g) F- (g) ΔrH°(0 K) = 129557.7 ± 1 cm-1Martin 2000, Hu 2006a
0.4261640.8 [NH4]+ (g) → NH3 (g) H+ (g) ΔrH°(0 K) = 846.40 ± 0.3 kJ/molCzako 2008
0.3552767.2 HCN (g) → H+ (g) [CN]- (g) ΔrH°(0 K) = 122244 ± 4 cm-1Hu 2006
0.3543118.5 [HOC(O)O]- (g) → [OC(O)O]-2 (g) H+ (g) ΔrH°(0 K) = 484.02 ± 0.90 kcal/molRuscic W1RO
0.3431089.4 HCl(O)(O)O (g) → [OCl(O)O]- (g) H+ (g) ΔrH°(0 K) = 276.70 ± 0.90 kcal/molRuscic W1RO
0.3161091.5 HOCl(O)(O)O (g) → [OCl(O)(O)O]- (g) H+ (g) ΔrH°(0 K) = 299.44 ± 0.90 kcal/molRuscic W1RO
0.3028820.1 H2S (g) → H+ (g) [SH]- (g) ΔrH°(0 K) = 122458 ± 3 cm-1Shiell 2000a
0.287890.4 [ClFH]+ (g) → ClF (g) H+ (g) ΔrH°(0 K) = 112.97 ± 0.90 kcal/molRuscic W1RO
0.282887.4 [FClH]+ (g) → ClF (g) H+ (g) ΔrH°(0 K) = 119.17 ± 0.90 kcal/molRuscic W1RO
0.26681.9 [H2]+ (g) → 2 H+ (g) ΔrH°(0 K) = 131058.121975 ± 0.000098 cm-1Liu 2009, note unc, Korobov 2006, Korobov 2006a, Korobov 2008
0.26681.10 [H2]+ (g) → 2 H+ (g) ΔrH°(0 K) = 131058.1219937 ± 0.0000012 cm-1Korobov 2017, note unc
0.2645703.5 CH2Cl2 (g) → [CHCl2]- (g) H+ (g) ΔrH°(0 K) = 376.27 ± 0.90 kcal/molRuscic W1RO


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.128 of the Thermochemical Network. Argonne National Laboratory, Lemont, Illinois 2023; available at ATcT.anl.gov
[DOI: 10.17038/CSE/1997230]
4   N. Genossar, P. B. Changala, B. Gans, J.-C. Loison, S. Hartweg, M.-A. Martin-Drumel, G. A. Garcia, J. F. Stanton, B. Ruscic, and J. H. Baraban
Ring-Opening Dynamics of the Cyclopropyl Radical and Cation: the Transition State Nature of the Cyclopropyl Cation
J. Am. Chem. Soc. 144, 18518-18525 (2022) [DOI: 10.1021/jacs.2c07740]
5   B. Ruscic and D. H. Bross
Active Thermochemical Tables: The Thermophysical and Thermochemical Properties of Methyl, CH3, and Methylene, CH2, Corrected for Nonrigid Rotor and Anharmonic Oscillator Effects.
Mol. Phys. e1969046 (2021) [DOI: 10.1080/00268976.2021.1969046]
6   J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton,
Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions
J. Chem. Phys. 155, 184109 (2021) [DOI: 10.1063/5.0069322]
7   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
8   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.